Are We Strategically Naive or Guided by Trust and Trustworthiness in Cheap-Talk Communication.png
Are We Strategically Naive or Guided by Trust and Trustworthiness in Cheap-Talk Communication?” was published in Management Science — the flagship journal of the Institute for Operations Research and the Management Sciences (INFORMS) in April 2021.
Glynis Condon

3 questions with Özalp Özer: How to build trust in business relationships

Özer’s paper published in INFORMS’ Management Science 2021 explores the dynamics behind “cheap-talk” communications.

Trust and trustworthiness are important in both our personal and business relationships. How then can we build environments that foster increased trust, trustworthiness and cooperation?

In the first edition of a new series that focuses on research papers published by scientists within the Amazon Supply Chain Optimization Technologies (SCOT) organization, we interview Özalp Özer, coauthor of “Are We Strategically Naive or Guided by Trust and Trustworthiness in Cheap-Talk Communication?”. The paper was published in Management Science — the flagship journal of the Institute for Operations Research and the Management Sciences (INFORMS) in April 2021.

Özalp Özer profile image
Özalp Özer is a senior principal scientist at Amazon, and George and Fonsa Brody Professor of Management Science at The University of Texas at Dallas.

Özer is a senior principal scientist at Amazon, and George and Fonsa Brody Professor of Management Science at The University of Texas at Dallas (UTD). He earned a PhD in operations research from Columbia University, before going on to serve on the faculty at Stanford and Columbia. Özer has published extensively on a diverse range of topics, from supply chain management, capacity and inventory management to pricing and revenue management.

Özer says that a guiding principle behind his research is to focus on solving problems that have a real-world impact at scale. At Stanford and then UTD, Özer found himself drawn to the field of behavioral and experimental economics — particularly the field of game theory and understanding how to model actions and emotions in scenarios involving multiple decision makers in dynamic environments.

Driven by his interest in tackling real-world business problems, Özer remained engaged with industry during his tenure as an academic. While working on a project focused on designing effective procurement contracts, he observed the important role that trust played in establishing and fostering business relationships.

In many cases, the interests of the parties engaging in a negotiation are not aligned. To give one example, suppliers can use product forecast information from a buyer to make capacity, inventory and other manufacturing-related decisions. However, buyers might often provide suppliers with overly optimistic forecasts to ensure an abundant supply. If the demand for the product turns out to be lower than anticipated, the supplier bears the excess investment risk.

Özer says that this scenario represents an example of “cheap talk communications.” He outlines three characteristics that are common to all cheap talk communications: they are costless (they are devoid of monetary penalties), they are non-binding (a buyer can provide a forecast without committing to it), and they are non-verifiable (no forecast can be completely accurate in the light of market uncertainty). To complicate matters, the objective functions that each party is trying to maximize are at odds (or not perfectly aligned) with each other.

Standard game theory suggests that each party in a business transaction will move toward an equilibrium that maximizes their own payoff. In a cheap-talk setting, where the information is costless, non-binding and non-verifiable, the theory suggests that each party will disregard the information supplied by the other.

However, Özer finds that people involved in business (as well as personal) transactions frequently factor into their decision-making information supplied by the other party, even when their incentives are not perfectly aligned and even when the information or recommendation may be perceived as “cheap”. They do this by taking the business context and the related relationship into account. Doing so results in higher returns for both parties involved. For example, third-party sellers are more likely to act on price reduction or replenishment recommendations from Amazon, if they find that these recommendations have previously resulted in an uptick in sales and profits.

Ozer says that “cheap talk” communications have the unfortunate emphasis on being “cheap” and less emphasis on how they are informative and can align incentives. In a series of publications, Ozer shows why, when, and how such communications and recommendations turn out to be informative, and how they help align business objectives, resulting in both parties making better decisions.   

In this interview, Özer talks about findings from the recently published INFORMS paper and discusses the implications of these findings for companies like Amazon.

Q. What are the two models that can be used to explain how cheap talk communications work between decision makers?

As our paper suggests, there are two contrasting economic theories that can be used to analyze cheap-talk communications.

The trust-embedded model — which takes a more optimistic view of humanity — suggests that decision makers are motivated by non-monetary motives to be trusting and trustworthy, besides the monetary incentives such as maximizing cash flow.   

Here, we define trust as instances of decision makers behaving voluntarily in a way that put themselves in vulnerable engagement due to the uncertain behavior of the other party (the trustee), based upon the expectation of a positive outcome from that engagement. Trustworthiness flips the perspective to that of the trustee. We define trustworthiness as an instance of a decision maker behaving voluntarily in a way not to take advantage of the trustor’s vulnerable position – even when faced with a self-serving decision that conflicts with the trustor’s objectives.

Humans use non-Bayesian, trust-based belief systems to update their rules governing interactions with other parties. In short, people involved in a business transaction are willing to be vulnerable and take risk.
Özalp Özer

The trust-embedded model suggests that when engaging with others, decision makers are averse to manipulating information in economic interactions. They incur disutility from lying. As a result, they assess the trustworthiness of the counterparty, and they form a trust factor towards them. This trust factor governs how decision makers interpret and use the information they receive from others.

In other words, humans use non-Bayesian, trust-based belief systems to update their rules governing interactions with other parties. In short, people involved in a business transaction are willing to be vulnerable and take risk. Because they assess — even sometimes incorrectly — that doing so yields positive outcomes, they engage in and cultivate behaviors conducive to enabling these outcomes.

The trust embedded model suggests that individuals are guided by more than self-interest or pecuniary motives as they engage in transactions. For example, senders of information are guided by factors such as fairness and tenets that are central to their company. As a result, they share more information and resources than strictly necessary.

In contrast to the trust-embedded model, the level-k model — the second model discussed in the paper — suggests that decision makers are limited in their ability to think strategically. Receivers of information cannot anticipate the extent to which the sender might have distorted the message. On the flip-side, senders cannot account for just how much receivers might discount their message. Consequently, senders share more than necessary, because they take a dim view of the receiver’s ability to discount their message.

It’s important to note that even the level-k model can sometimes explain why senders and receivers tend to overshare information in a cheap-talk setting, which contrasts with the outcome standard game theory models would predict. It’s just that their motivations are different – with the level-k model, oversharing is driven by a limited ability to think strategically, rather than by the willingness to be trusting and trustworthy.

Overall, our paper that analyzed existing cheap-talk experiment data, found more support for the trust-embedded model, suggesting that individuals are also driven by non-monetary incentives when conducting transactions.

Q. Why do you think that trust-embedded models do a better job of explaining cheap-talk communications? What are the implications for organizations engaging in relationships with businesses and partners?

During the internet age, we’ve seen e-commerce, hospitality and ride-sharing companies grow precisely because they’ve been able to create policies and tools that encourage trust.
Özalp Özer

The answer to your first question is relatively simple — human beings are far more sophisticated than the level-k model gives them credit for. For example, there are many sellers on Amazon’s website who are proficient in using a variety of tools they have developed to make decisions related to pricing and inventory.

As a result, if we want the tools we provide to earn sellers’ trust, we need to think of the system more holistically at both an architecture and policy level to truly understand what builds trust and what is a trust-buster.

During the internet age, we’ve seen e-commerce, hospitality and ride-sharing companies grow precisely because they’ve been able to create policies and tools that encourage trust. Product reviews, the ability to get refunds for a vacation rental because hosts might not have lived up to their promises, or the price for a ride being set in advance — these are some of the mechanisms that let you buy a product or rent a home from people you don’t know.

Q. How are the findings in your paper applicable to your work at Amazon?

We are leveraging the insights from this stream of research as well as others to augment our understanding of seller trust, particularly in relation to how sellers interact with our inventory management tools, and how fidelity of recommendations impact sellers’ trust.

There is no interaction at Amazon that I can think of that doesn’t have an element of trust.
Özalp Özer

We are designing our related processes to reduce barriers for trusting and trustworthy engagements among the participants of our stores; for example, by making specific investments to support seller growth in areas that benefit sellers and customers the most; by reducing perceived vulnerabilities in carrying excess inventory; by looking into ways in which we stabilize our policies; by creating visibility to the reasons for our recommendations; by looking into ways in which we can build interactive communication channels among participants in our stores; and by building reputation and feedback systems that foster trusting and trustworthy engagements and on and on.

Using large-scale data, scientific methods like causal machine learning to optimization, as well as continual engagement with selling partners and customers, we aim to identify at the extent to which sellers trust evolves — so we can identify and invest in processes that foster trust and as a result growth and economic prosperity.  

There is no interaction at Amazon that I can think of that doesn’t have an element of trust. Jeff Bezos has said, “You can’t ask for trust, you just have to do it the hard way, one step at a time.” In my time at the company, I have been struck by the tireless efforts of so many people to gain seller and customer trust. At Amazon, it is just part of everything we do.

Related content

IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
US, WA, Seattle
The People eXperience and Technology (PXT) Central Science Team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms, process improvements and products, which simultaneously improve Amazon and the lives, wellbeing, and the value of work of Amazonians. We are an interdisciplinary team which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We invest in innovation and rapid prototyping of scientific models, AI/ML technologies and software solutions to accelerate informed, accurate, and reliable decision backed by science and data. As a research scientist you will you will design and carry out surveys to address business questions; analyze survey and other forms of data with regression models; perform weighting and multiple imputation to reduce bias due to nonresponse. You will conduct methodological and statistical research to understand the quality of survey data. You will work with economists, engineers, and computer scientists to select samples, draft and test survey questions, calculate nonresponse adjusted weights, and estimate regression models on large scale data. You will evaluate, diagnose, understand, and surface drivers and moderators for key research streams, including (but are not limited to) attrition, engagement, productivity, inclusion, and Amazon culture. Key job responsibilities Help to design and execute a scalable global content development and validation strategy to drive more effective decisions and improve the employee experience across all of Amazon Conduct psychometric and econometric analyses to evaluate integrity and practical application of survey questions and data Identify and execute research streams to evaluate how to mitigate or remove sources of measurement error Partner closely and drive effective collaborations across multi-disciplinary research and product teams Manage full life cycle of large-scale research programs (Develop strategy, gather requirements, manage and execute)
US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs. - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions. About the team It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experiences of Amazon customers worldwide. Your work will directly impact our customers in the form of products and services that make use of language and multimodal technology!
US, WA, Seattle
Are you excited about developing foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for collaborative scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking an experienced and senior Applied Scientist to focus on computer vision machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!