Are We Strategically Naive or Guided by Trust and Trustworthiness in Cheap-Talk Communication.png
Are We Strategically Naive or Guided by Trust and Trustworthiness in Cheap-Talk Communication?” was published in Management Science — the flagship journal of the Institute for Operations Research and the Management Sciences (INFORMS) in April 2021.
Glynis Condon

3 questions with Özalp Özer: How to build trust in business relationships

Özer’s paper published in INFORMS’ Management Science 2021 explores the dynamics behind “cheap-talk” communications.

Trust and trustworthiness are important in both our personal and business relationships. How then can we build environments that foster increased trust, trustworthiness and cooperation?

In the first edition of a new series that focuses on research papers published by scientists within the Amazon Supply Chain Optimization Technologies (SCOT) organization, we interview Özalp Özer, coauthor of “Are We Strategically Naive or Guided by Trust and Trustworthiness in Cheap-Talk Communication?”. The paper was published in Management Science — the flagship journal of the Institute for Operations Research and the Management Sciences (INFORMS) in April 2021.

Özalp Özer profile image
Özalp Özer is a senior principal scientist at Amazon, and George and Fonsa Brody Professor of Management Science at The University of Texas at Dallas.

Özer is a senior principal scientist at Amazon, and George and Fonsa Brody Professor of Management Science at The University of Texas at Dallas (UTD). He earned a PhD in operations research from Columbia University, before going on to serve on the faculty at Stanford and Columbia. Özer has published extensively on a diverse range of topics, from supply chain management, capacity and inventory management to pricing and revenue management.

Özer says that a guiding principle behind his research is to focus on solving problems that have a real-world impact at scale. At Stanford and then UTD, Özer found himself drawn to the field of behavioral and experimental economics — particularly the field of game theory and understanding how to model actions and emotions in scenarios involving multiple decision makers in dynamic environments.

Driven by his interest in tackling real-world business problems, Özer remained engaged with industry during his tenure as an academic. While working on a project focused on designing effective procurement contracts, he observed the important role that trust played in establishing and fostering business relationships.

In many cases, the interests of the parties engaging in a negotiation are not aligned. To give one example, suppliers can use product forecast information from a buyer to make capacity, inventory and other manufacturing-related decisions. However, buyers might often provide suppliers with overly optimistic forecasts to ensure an abundant supply. If the demand for the product turns out to be lower than anticipated, the supplier bears the excess investment risk.

Özer says that this scenario represents an example of “cheap talk communications.” He outlines three characteristics that are common to all cheap talk communications: they are costless (they are devoid of monetary penalties), they are non-binding (a buyer can provide a forecast without committing to it), and they are non-verifiable (no forecast can be completely accurate in the light of market uncertainty). To complicate matters, the objective functions that each party is trying to maximize are at odds (or not perfectly aligned) with each other.

Standard game theory suggests that each party in a business transaction will move toward an equilibrium that maximizes their own payoff. In a cheap-talk setting, where the information is costless, non-binding and non-verifiable, the theory suggests that each party will disregard the information supplied by the other.

However, Özer finds that people involved in business (as well as personal) transactions frequently factor into their decision-making information supplied by the other party, even when their incentives are not perfectly aligned and even when the information or recommendation may be perceived as “cheap”. They do this by taking the business context and the related relationship into account. Doing so results in higher returns for both parties involved. For example, third-party sellers are more likely to act on price reduction or replenishment recommendations from Amazon, if they find that these recommendations have previously resulted in an uptick in sales and profits.

Ozer says that “cheap talk” communications have the unfortunate emphasis on being “cheap” and less emphasis on how they are informative and can align incentives. In a series of publications, Ozer shows why, when, and how such communications and recommendations turn out to be informative, and how they help align business objectives, resulting in both parties making better decisions.   

In this interview, Özer talks about findings from the recently published INFORMS paper and discusses the implications of these findings for companies like Amazon.

Q. What are the two models that can be used to explain how cheap talk communications work between decision makers?

As our paper suggests, there are two contrasting economic theories that can be used to analyze cheap-talk communications.

The trust-embedded model — which takes a more optimistic view of humanity — suggests that decision makers are motivated by non-monetary motives to be trusting and trustworthy, besides the monetary incentives such as maximizing cash flow.   

Here, we define trust as instances of decision makers behaving voluntarily in a way that put themselves in vulnerable engagement due to the uncertain behavior of the other party (the trustee), based upon the expectation of a positive outcome from that engagement. Trustworthiness flips the perspective to that of the trustee. We define trustworthiness as an instance of a decision maker behaving voluntarily in a way not to take advantage of the trustor’s vulnerable position – even when faced with a self-serving decision that conflicts with the trustor’s objectives.

Humans use non-Bayesian, trust-based belief systems to update their rules governing interactions with other parties. In short, people involved in a business transaction are willing to be vulnerable and take risk.
Özalp Özer

The trust-embedded model suggests that when engaging with others, decision makers are averse to manipulating information in economic interactions. They incur disutility from lying. As a result, they assess the trustworthiness of the counterparty, and they form a trust factor towards them. This trust factor governs how decision makers interpret and use the information they receive from others.

In other words, humans use non-Bayesian, trust-based belief systems to update their rules governing interactions with other parties. In short, people involved in a business transaction are willing to be vulnerable and take risk. Because they assess — even sometimes incorrectly — that doing so yields positive outcomes, they engage in and cultivate behaviors conducive to enabling these outcomes.

The trust embedded model suggests that individuals are guided by more than self-interest or pecuniary motives as they engage in transactions. For example, senders of information are guided by factors such as fairness and tenets that are central to their company. As a result, they share more information and resources than strictly necessary.

In contrast to the trust-embedded model, the level-k model — the second model discussed in the paper — suggests that decision makers are limited in their ability to think strategically. Receivers of information cannot anticipate the extent to which the sender might have distorted the message. On the flip-side, senders cannot account for just how much receivers might discount their message. Consequently, senders share more than necessary, because they take a dim view of the receiver’s ability to discount their message.

It’s important to note that even the level-k model can sometimes explain why senders and receivers tend to overshare information in a cheap-talk setting, which contrasts with the outcome standard game theory models would predict. It’s just that their motivations are different – with the level-k model, oversharing is driven by a limited ability to think strategically, rather than by the willingness to be trusting and trustworthy.

Overall, our paper that analyzed existing cheap-talk experiment data, found more support for the trust-embedded model, suggesting that individuals are also driven by non-monetary incentives when conducting transactions.

Q. Why do you think that trust-embedded models do a better job of explaining cheap-talk communications? What are the implications for organizations engaging in relationships with businesses and partners?

During the internet age, we’ve seen e-commerce, hospitality and ride-sharing companies grow precisely because they’ve been able to create policies and tools that encourage trust.
Özalp Özer

The answer to your first question is relatively simple — human beings are far more sophisticated than the level-k model gives them credit for. For example, there are many sellers on Amazon’s website who are proficient in using a variety of tools they have developed to make decisions related to pricing and inventory.

As a result, if we want the tools we provide to earn sellers’ trust, we need to think of the system more holistically at both an architecture and policy level to truly understand what builds trust and what is a trust-buster.

During the internet age, we’ve seen e-commerce, hospitality and ride-sharing companies grow precisely because they’ve been able to create policies and tools that encourage trust. Product reviews, the ability to get refunds for a vacation rental because hosts might not have lived up to their promises, or the price for a ride being set in advance — these are some of the mechanisms that let you buy a product or rent a home from people you don’t know.

Q. How are the findings in your paper applicable to your work at Amazon?

We are leveraging the insights from this stream of research as well as others to augment our understanding of seller trust, particularly in relation to how sellers interact with our inventory management tools, and how fidelity of recommendations impact sellers’ trust.

There is no interaction at Amazon that I can think of that doesn’t have an element of trust.
Özalp Özer

We are designing our related processes to reduce barriers for trusting and trustworthy engagements among the participants of our stores; for example, by making specific investments to support seller growth in areas that benefit sellers and customers the most; by reducing perceived vulnerabilities in carrying excess inventory; by looking into ways in which we stabilize our policies; by creating visibility to the reasons for our recommendations; by looking into ways in which we can build interactive communication channels among participants in our stores; and by building reputation and feedback systems that foster trusting and trustworthy engagements and on and on.

Using large-scale data, scientific methods like causal machine learning to optimization, as well as continual engagement with selling partners and customers, we aim to identify at the extent to which sellers trust evolves — so we can identify and invest in processes that foster trust and as a result growth and economic prosperity.  

There is no interaction at Amazon that I can think of that doesn’t have an element of trust. Jeff Bezos has said, “You can’t ask for trust, you just have to do it the hard way, one step at a time.” In my time at the company, I have been struck by the tireless efforts of so many people to gain seller and customer trust. At Amazon, it is just part of everything we do.

Related content

US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Global Hiring Science owns and develops products and services using Artificial Intelligence and Machine Learning (ML) that enhance recruitment. We collaborate with scientists to build and maintain machine learning solutions for hiring, offering opportunities to both apply and develop ML engineering skills in a production environment. Key job responsibilities • Design and implement advanced AI models using the latest LLM and GenAI technologies to develop fair and accurate machine learning models for hiring. • Clearly and cogently present your work and ideas, and respond effectively to feedback. • Collaborate with cross-functional teams with Research Scientists and Software Engineers to integrate AI-driven products into Amazon’s hiring process. • Stay at the advance of AI research, continuously exploring and implementing new techniques in NLP, LLMs, and GenAI to drive innovation in hiring. • Implement advanced natural language processing models to extract insights from diverse data sources. • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities. • Contribute to the scientific community through publications, presentations, and collaborations with academic institutions. About the team The mission of Global Hiring Science (GHS) is to improve both the efficiency and effectiveness of hiring across Amazon with assessments and interview improvements. We are a team of experts in machine learning, industrial-organizational psychology, data science, and measuring the knowledge, skills, and abilities that it takes to be successful at Amazon.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense team with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! --- About the team We’re looking for a generalist software engineer to build and evolve our internal data platform. The team builds data-intensive services that ingest, process, store, and distribute multi-modal training data across multiple internal and external sources. This work emphasizes data integrity, reliability, and extensibility in support of large-scale training and experimentation workloads. The team also builds and maintains APIs and SDKs that enable product engineers and researchers to build on top of the platform. As research directions change, so does our data, and today the team is focused on hardening the platform to reliably deliver an evolving set of data schemas, sources, and modalities. By building strong foundations and durable abstractions, we aim to enable new kinds of tooling and workflows over time. The team will play a key role in shaping them as the research evolves. --- Key job responsibilities * Build and operate reliable, performant backend and data platform services that support continuous ingestion and use of multi-modal training data. * Identify and implement opportunities to accelerate data generation, validation, and usage across training and evaluation workflows from multiple internal and external sources. * Partner closely with Human Feedback, Data Generation, Product Engineering, and Research teams to evolve and scale the data platform, APIs, and SDKs. * Own projects end to end, from technical design and implementation through deployment, observability, and long-term maintainability. * Write clear technical documentation and communicate design decisions and tradeoffs to stakeholders across multiple teams. * Raise the team’s technical aptitude through thoughtful code reviews, knowledge sharing, and mentorship.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences