Are We Strategically Naive or Guided by Trust and Trustworthiness in Cheap-Talk Communication.png
Are We Strategically Naive or Guided by Trust and Trustworthiness in Cheap-Talk Communication?” was published in Management Science — the flagship journal of the Institute for Operations Research and the Management Sciences (INFORMS) in April 2021.
Glynis Condon

3 questions with Özalp Özer: How to build trust in business relationships

Özer’s paper published in INFORMS’ Management Science 2021 explores the dynamics behind “cheap-talk” communications.

Trust and trustworthiness are important in both our personal and business relationships. How then can we build environments that foster increased trust, trustworthiness and cooperation?

In the first edition of a new series that focuses on research papers published by scientists within the Amazon Supply Chain Optimization Technologies (SCOT) organization, we interview Özalp Özer, coauthor of “Are We Strategically Naive or Guided by Trust and Trustworthiness in Cheap-Talk Communication?”. The paper was published in Management Science — the flagship journal of the Institute for Operations Research and the Management Sciences (INFORMS) in April 2021.

Özalp Özer profile image
Özalp Özer is a senior principal scientist at Amazon, and George and Fonsa Brody Professor of Management Science at The University of Texas at Dallas.

Özer is a senior principal scientist at Amazon, and George and Fonsa Brody Professor of Management Science at The University of Texas at Dallas (UTD). He earned a PhD in operations research from Columbia University, before going on to serve on the faculty at Stanford and Columbia. Özer has published extensively on a diverse range of topics, from supply chain management, capacity and inventory management to pricing and revenue management.

Özer says that a guiding principle behind his research is to focus on solving problems that have a real-world impact at scale. At Stanford and then UTD, Özer found himself drawn to the field of behavioral and experimental economics — particularly the field of game theory and understanding how to model actions and emotions in scenarios involving multiple decision makers in dynamic environments.

Driven by his interest in tackling real-world business problems, Özer remained engaged with industry during his tenure as an academic. While working on a project focused on designing effective procurement contracts, he observed the important role that trust played in establishing and fostering business relationships.

In many cases, the interests of the parties engaging in a negotiation are not aligned. To give one example, suppliers can use product forecast information from a buyer to make capacity, inventory and other manufacturing-related decisions. However, buyers might often provide suppliers with overly optimistic forecasts to ensure an abundant supply. If the demand for the product turns out to be lower than anticipated, the supplier bears the excess investment risk.

Özer says that this scenario represents an example of “cheap talk communications.” He outlines three characteristics that are common to all cheap talk communications: they are costless (they are devoid of monetary penalties), they are non-binding (a buyer can provide a forecast without committing to it), and they are non-verifiable (no forecast can be completely accurate in the light of market uncertainty). To complicate matters, the objective functions that each party is trying to maximize are at odds (or not perfectly aligned) with each other.

Standard game theory suggests that each party in a business transaction will move toward an equilibrium that maximizes their own payoff. In a cheap-talk setting, where the information is costless, non-binding and non-verifiable, the theory suggests that each party will disregard the information supplied by the other.

However, Özer finds that people involved in business (as well as personal) transactions frequently factor into their decision-making information supplied by the other party, even when their incentives are not perfectly aligned and even when the information or recommendation may be perceived as “cheap”. They do this by taking the business context and the related relationship into account. Doing so results in higher returns for both parties involved. For example, third-party sellers are more likely to act on price reduction or replenishment recommendations from Amazon, if they find that these recommendations have previously resulted in an uptick in sales and profits.

Ozer says that “cheap talk” communications have the unfortunate emphasis on being “cheap” and less emphasis on how they are informative and can align incentives. In a series of publications, Ozer shows why, when, and how such communications and recommendations turn out to be informative, and how they help align business objectives, resulting in both parties making better decisions.   

In this interview, Özer talks about findings from the recently published INFORMS paper and discusses the implications of these findings for companies like Amazon.

Q. What are the two models that can be used to explain how cheap talk communications work between decision makers?

As our paper suggests, there are two contrasting economic theories that can be used to analyze cheap-talk communications.

The trust-embedded model — which takes a more optimistic view of humanity — suggests that decision makers are motivated by non-monetary motives to be trusting and trustworthy, besides the monetary incentives such as maximizing cash flow.   

Here, we define trust as instances of decision makers behaving voluntarily in a way that put themselves in vulnerable engagement due to the uncertain behavior of the other party (the trustee), based upon the expectation of a positive outcome from that engagement. Trustworthiness flips the perspective to that of the trustee. We define trustworthiness as an instance of a decision maker behaving voluntarily in a way not to take advantage of the trustor’s vulnerable position – even when faced with a self-serving decision that conflicts with the trustor’s objectives.

Humans use non-Bayesian, trust-based belief systems to update their rules governing interactions with other parties. In short, people involved in a business transaction are willing to be vulnerable and take risk.
Özalp Özer

The trust-embedded model suggests that when engaging with others, decision makers are averse to manipulating information in economic interactions. They incur disutility from lying. As a result, they assess the trustworthiness of the counterparty, and they form a trust factor towards them. This trust factor governs how decision makers interpret and use the information they receive from others.

In other words, humans use non-Bayesian, trust-based belief systems to update their rules governing interactions with other parties. In short, people involved in a business transaction are willing to be vulnerable and take risk. Because they assess — even sometimes incorrectly — that doing so yields positive outcomes, they engage in and cultivate behaviors conducive to enabling these outcomes.

The trust embedded model suggests that individuals are guided by more than self-interest or pecuniary motives as they engage in transactions. For example, senders of information are guided by factors such as fairness and tenets that are central to their company. As a result, they share more information and resources than strictly necessary.

In contrast to the trust-embedded model, the level-k model — the second model discussed in the paper — suggests that decision makers are limited in their ability to think strategically. Receivers of information cannot anticipate the extent to which the sender might have distorted the message. On the flip-side, senders cannot account for just how much receivers might discount their message. Consequently, senders share more than necessary, because they take a dim view of the receiver’s ability to discount their message.

It’s important to note that even the level-k model can sometimes explain why senders and receivers tend to overshare information in a cheap-talk setting, which contrasts with the outcome standard game theory models would predict. It’s just that their motivations are different – with the level-k model, oversharing is driven by a limited ability to think strategically, rather than by the willingness to be trusting and trustworthy.

Overall, our paper that analyzed existing cheap-talk experiment data, found more support for the trust-embedded model, suggesting that individuals are also driven by non-monetary incentives when conducting transactions.

Q. Why do you think that trust-embedded models do a better job of explaining cheap-talk communications? What are the implications for organizations engaging in relationships with businesses and partners?

During the internet age, we’ve seen e-commerce, hospitality and ride-sharing companies grow precisely because they’ve been able to create policies and tools that encourage trust.
Özalp Özer

The answer to your first question is relatively simple — human beings are far more sophisticated than the level-k model gives them credit for. For example, there are many sellers on Amazon’s website who are proficient in using a variety of tools they have developed to make decisions related to pricing and inventory.

As a result, if we want the tools we provide to earn sellers’ trust, we need to think of the system more holistically at both an architecture and policy level to truly understand what builds trust and what is a trust-buster.

During the internet age, we’ve seen e-commerce, hospitality and ride-sharing companies grow precisely because they’ve been able to create policies and tools that encourage trust. Product reviews, the ability to get refunds for a vacation rental because hosts might not have lived up to their promises, or the price for a ride being set in advance — these are some of the mechanisms that let you buy a product or rent a home from people you don’t know.

Q. How are the findings in your paper applicable to your work at Amazon?

We are leveraging the insights from this stream of research as well as others to augment our understanding of seller trust, particularly in relation to how sellers interact with our inventory management tools, and how fidelity of recommendations impact sellers’ trust.

There is no interaction at Amazon that I can think of that doesn’t have an element of trust.
Özalp Özer

We are designing our related processes to reduce barriers for trusting and trustworthy engagements among the participants of our stores; for example, by making specific investments to support seller growth in areas that benefit sellers and customers the most; by reducing perceived vulnerabilities in carrying excess inventory; by looking into ways in which we stabilize our policies; by creating visibility to the reasons for our recommendations; by looking into ways in which we can build interactive communication channels among participants in our stores; and by building reputation and feedback systems that foster trusting and trustworthy engagements and on and on.

Using large-scale data, scientific methods like causal machine learning to optimization, as well as continual engagement with selling partners and customers, we aim to identify at the extent to which sellers trust evolves — so we can identify and invest in processes that foster trust and as a result growth and economic prosperity.  

There is no interaction at Amazon that I can think of that doesn’t have an element of trust. Jeff Bezos has said, “You can’t ask for trust, you just have to do it the hard way, one step at a time.” In my time at the company, I have been struck by the tireless efforts of so many people to gain seller and customer trust. At Amazon, it is just part of everything we do.

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, WA, Seattle
Job summaryAmazon Prime Video is changing the way millions of customers enjoy digital content. Prime Video delivers premium content to customers through purchase and rental of movies and TV shows, unlimited on-demand streaming through Amazon Prime subscriptions, add-on channels like Showtime and HBO, and live concerts and sporting events like NFL Thursday Night Football. In total, Prime Video offers nearly 200,000 titles and is available across a wide variety of platforms, including PCs and Macs, Android and iOS mobile devices, Fire Tablets and Fire TV, Smart TVs, game consoles, Blu-ray players, set-top-boxes, and video-enabled Alexa devices. Amazon believes so strongly in the future of video that we've launched our own Amazon Studios to produce original movies and TV shows, many of which have already earned critical acclaim and top awards, including Oscars, Emmys and Golden Globes.The Global Consumer Engagement team within Amazon Prime Video builds product and technology solutions that drive customer activation and engagement across all our supported devices and global footprint. We obsess over finding effective, programmatic and scalable ways to reach customers via a broad portfolio of both in-app and out-of-app experiences. We would love to have you join us to build models that can classify and detect content available on Prime Video. We need you to analyze the video, audio and textual signal streams and improve state-of-art solutions while being scalable to Amazon size data. We need to solve problems across many cultures and languages, working alongside an operations team generating labels across many languages to help us achieve these goals. Our team consistently strives to innovate, and holds several novel patents and inventions in the motion picture and television industry. We are highly motivated to extend the state of the art.As a member of our team, you will apply your deep knowledge of Computer Vision and Machine Learning to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on addressing fundamental computer vision models like video understanding and video summarization in addition to building appropriate large scale datasets. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with independence and are often assigned to focus on areas with significant impact on audience satisfaction. You must be equally comfortable with digging in to customer requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions.You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than pleasing our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies and deep learning approaches to your solutions. We embrace the challenges of a fast paced market and evolving technologies, paving the way to universal availability of content. You will be encouraged to see the big picture, be innovative, and positively impact millions of customers. This is a young and evolving business where creativity and drive will have a lasting impact on the way video is enjoyed worldwide.
US, MA, Boston
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun.Amazon.com empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.This role is a 6-month Co-Op to join AR full-time (40 hours/week) from January 9, 2023 to June 23, 2023. Amazon Robotics co-op opportunities will be based out of the Greater Boston Area in our two state-of-the-art facilities in Westborough, MA and North Reading, MA. Both campuses provide a unique opportunity to have direct access to robotics testing labs and manufacturing facilities.Key job responsibilitiesWe are seeking data scientist co-ops to help us analyze data, quantify uncertainty, and build machine learning models to make quick prediction.
US, WA, Seattle
Job summary Looking for your next challenge? North America Sort Centers (NASC) are experiencing explosive growth and looking for a skilled, highly motivated Data Scientist to join the Sort Center Product, Science, and Analytics team. The Sort Center network is the critical Middle-Mile solution in the Amazon Transportation Services (ATS) group, linking Fulfillment Centers to the Last Mile. The experience of our customers is dependent on our ability to efficiently execute volume flow through the middle-mile network. Data Scientist will design and implement solutions to address complex business questions using advanced statistical and machine learning techniques, experimentation, and big data. In this role, you will build scalable ML models, apply advanced analysis technique and statistical concepts to draw insights from massive datasets, and create intuitive science models and data visualizations. You can contribute to each layers of a data solution – you work closely with business intelligence engineers and product managers to obtain relevant datasets and prototype predictive analytic models, you team up software development engineers to implement data pipeline to productionize your models, and review key results with business leaders and stakeholders. Your work exhibits a balance between scientific validity and business practicality. To be successful in this role, you must be able to turn ambiguous business questions into clearly defined problems, develop quantifiable metrics and robust machine learning models from imperfect data sources, and deliver results that meet high standards of data quality, security, and privacy. Inclusive Team Culture Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have 12 affinity groups (employee resource groups) with more than 87,000 employees across hundreds of chapters around the world. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which reminds team members to seek diverse perspectives, learn and be curious, and earn trust. Flexibility It isn’t about which hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We offer flexibility and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth We care about your career growth too. Whether your goals are to explore new technologies, take on bigger opportunities, or get to the next level, we'll help you get there. Our business is growing fast and our people will grow with it.
US, CA, Santa Clara
Job summaryAmazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Applied Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development and implementation of pricing & yield management (PYM) solutions using stochastic concepts to improve transportation planning solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution.As a Senior Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.