Syntiant NDP101
Syntiant's NDP architecture is built from the ground up to run deep learning algorithms. The company says its NDP101 neural decision processor achieves breakthrough performance by coupling computation and memory, and exploiting the inherent parallelism of deep learning and computing at only required numerical precision.
Credit: Syntiant

3 questions with Jeremy Holleman: How to design and develop ultra-low-power AI processors

Holleman, the chief scientist of Alexa Fund company Syntiant, explains why the company’s new architecture allows machine learning to be deployed practically anywhere.  

Editor’s Note: This article is the latest installment within a series Amazon Science is publishing related to the science behind products and services from companies in which Amazon has invested. Syntiant, founded in 2017, has shipped more than 10 million units to customers worldwide, and has obtained $65 million in funding from leading technology companies, including the Amazon Alexa Fund.

In late July, Amazon held its Alexa Live event, where the company introduced more than 50 features to help developers and device makers build ambient voice-computing experiences, and drive the growth of voice computing.

Jeremy Holleman, Syntiant's chief scientist
Jeremy Holleman is Syntiant's chief scientist, and a professor of electrical and computer engineering at the University of North Carolina at Charlotte.
Credit: Syntiant

The event included an Amazon Alexa Startups Showcase in which Syntiant, a semiconductor company founded in 2017, and based in Irvine, California, shared its vision for making voice the computing interface of the future.  

In 2017, Kurt Busch, Syntiant’s chief executive officer, and Jeremy Holleman, Syntiant’s chief scientist, and a professor of electrical and computer engineering at the University of North Carolina at Charlotte, were focused on finding an answer to the question: How do you optimize the performance of machine learning models on power- and cost-constrained hardware?

According to Syntiant, they — and other members of Syntiant’s veteran management team — had the idea for a processor architecture that could deliver 200 times the efficiency, 20 times the performance, and at half the cost of existing edge processors. One key to their approach — optimizing for memory access versus traditional processors’ focus on logic.

This insight, and others, led them to the formation of Syntiant, which for the past four years has been designing and developing ultra-low-power, high-performance, deep neural network processors for computing at the network’s edge, helping to reduce latency, and increase the privacy and security of power- and cost-constrained applications running on devices as small as earbuds, and as large as automobiles.

Syntiant’s processors enable always-on voice (AOV) control for most battery-powered devices, from cell phones and earbuds, to drones, laptops and other voice-activated products. The company’s Neural Decision Processors (NDPs) provide highly accurate wake word, command word and event detection in a tiny package with near-zero power consumption.

Syntiant CEO on the future of ambient computing
During the Amazon Alexa Startups Showcase, Kurt Busch, CEO of Syntiant, an Alexa Fund company, explained how they're using the latest in voice technology to invent the future of ambient computing, and why he thinks voice will be the next user interface.

Holleman is considered a leading authority on ultra-low-power integrated circuits, and directs the Integrated Silicon Systems Laboratory at the University of North Carolina, Charlotte, where he is an associate professor. He’s also is a coauthor of the book “Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces”, which was first published in 2011.

Amazon Science asked Holleman three questions about the challenges of designing and developing ultra-low-power AI processors, and why he believes voice will become the predominant user interface of the future.

Q. You are one of 22 authors on a paper, "MLPerf Tiny Benchmark", which has been accepted to the NeurIPS 2021 Conference. What does this benchmark suite comprise, and why is it significant to the tinyML field?

The MLPerf Tiny Benchmark actually includes four tests meant to measure the performance and efficiency of very small devices on ML inference: keyword spotting, person detection, image recognition, and anomaly detection. For each test, there is a reference model, and code to measure the latency and power on a reference platform.

I try to think about the benchmark from the standpoint of a system developer – someone building a device that needs some local intelligence. They have to figure out, with a given energy budget and system requirements, what solution is going to work for them. So they need to understand the power consumption and speed of different hardware. When you look at most of the information available, everyone measures their hardware on different things, so it’s really hard to compare. The benchmark makes it clear exactly what is being measured and – in the closed division – every submission is running the exact same model, so it’s a clear apples-to-apples comparison.

Then the open division takes the same principle – every submission does the same thing – but allows for some different tradeoffs by just defining the problem and allowing submitters to run different models that may take advantage of particular aspects of their hardware. So you wind up with a Pareto surface of accuracy, power, and speed.  I think this last part is particularly important in the “tiny” space because there is a lot of room to jointly optimize models, hardware, and features to get high-performing and high-efficiency end-to-end systems.

Q. What do you consider Syntiant’s key ingredients in your development and design of ultra-low-power AI processors, and how will your team’s work contribute to voice becoming the predominant user interface of the future?

I would say there are two major elements that have been key to our success. The first is, as I mentioned before, that edge ML requires tight coupling between the hardware and the algorithms. From the very beginning at Syntiant, we’ve had our silicon designers and our modelers working closely together. That shows up in office arrangement, with hardware and software groups all intermingled; in code and design reviews, really all across the company. And I think that’s paid off in outcomes. We see how easy it is to map a given algorithm to our hardware, because the hardware was designed to do all the hard work of coordinating memory access in a way that’s optimized for exactly the types of computation we see in ML workloads. And for the same reason, we see the benefits of that approach in power and performance.

The second big piece is that we realized that deep learning is still such a new field that the expertise required to deliver production-grade solutions is still very rare. It’s easy enough to download an MNIST or CIFAR demo, train it up and you think, “I’ve got this figured out!” But when you deploy a device to millions of people who interact with it on a daily basis, the job becomes much harder. You need to acquire data, validate it, debug models, and it’s a big job. We knew that for most customers, we couldn’t just toss a piece of silicon over the fence and leave the rest to them. That led us to put a lot of effort into building a complete pipeline addressing the data tasks, training, and evaluation, so we can provide a complete solution to customers who don’t have a ton of ML expertise in house.

Q. What in particular makes edge processing difficult?

On the hardware side, the big challenges are power and cost. Whether you’re talking about a watch, an earbud, or a phone, consumers have some pretty hard requirements for how long a battery needs to last – generally a day – and how much they will pay for something. And on the modeling side, edge devices find themselves in a tremendously diverse set of environments, so you need a voice assistant to recognize you not just in the kitchen or in the car, but on a factory floor, at a football game, and everywhere else you can imagine going.

Then those three things push against each other like the classical balloon analogy. If you push down cost by choosing a lower-end processor, it may not have the throughput to run the model quickly, so you run at a lower frame rate, under-sampling the input signal, and you miss events. Or you find a model that works well, and you run it fast enough, but then the power required to run it limits battery life. This tradeoff is especially difficult for features that are always on, like a wakeword detector, or person detection in a security camera. At Syntiant, we had to address all of these issues simultaneously, which is why it was so important to have all of our teams tightly connected, work through the use cases, and know how each piece affected all the other pieces.

Conventional general-purpose processors don’t have the efficiency to run strong models within the constraints that edge devices have. With our new architecture, powerful machine learning can be deployed practically anywhere for the first time.
Jeremy Holleman

Having done that work, the result is that you get the power of modern ML in tiny devices with almost no impact on the battery life. And the possibilities, especially for voice interfaces, is very exciting. We’ve all grown accustomed to interacting with our phone by voice and we’ve seen how often we want to do something but don’t have a free hand available for a tactile interface.

Syntiant’s technology is making it possible to bring that experience to smaller and cheaper devices with all of the processing happening locally. So many of the devices we use have useful information they can’t share with us because the interface would be too expensive. Imagine being able to say “TV remote, where are you?” or “Smoke alarm, why are you beeping?” and getting a clear and quick answer. We’ve forgotten that some annoying things we’ve gotten so used to can be fixed. And of course you don’t want all of the cost and the privacy concerns associated with sending all of that information to the cloud.

So we’re focused on putting that level of intelligence right in the device. To deliver that, we need all of these pieces to come together: the data pipeline, the models, and the hardware. Conventional general-purpose processors don’t have the efficiency to run strong models within the constraints that edge devices have. With our new architecture, powerful machine learning can be deployed practically anywhere for the first time.

Research areas

Related content

US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, NY, New York
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. Identify and devise new video related solutions following a customer-obsessed scientific approach to address customer or business problems when the problem is ill-defined, needs to be framed, and new methodologies or paradigms need to be invented at the product level. Articulate potential scientific challenges of ongoing or future customers’ needs or business problems, and present interventions to address them. Independently assess alternative video related technologies, driving evaluation and adoption of those that fit best A day in the life As an Applied Scientist on the Sponsored Products Video team, you will work with a team of talented and experienced engineers, scientists, and designers to help bring new products to market and ensure that our customers are delighted by what we create. The Sponsored Products Video team is responsible for the design, development, and implementation of Sponsored Products Video experiences worldwide. About the team The Sponsored Products Video team within Sponsored Products and Brands creates relevant and engaging video experiences, connecting advertisers and shoppers. We are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping delightful, & personal.
IN, TS, Hyderabad
We're seeking an Applied Scientist to lead and innovate in applying advanced AI technologies that will reshape how businesses sell on Amazon. Our team is passionate about leveraging Machine Learning, GenAI, and Agentic AI to help B2B sellers optimize their operations and drive growth. Join Amazon Business 3P (Third Party - Sellers) - a rapidly growing global organization where we innovate at the intersection of AI technology and B2B commerce. We're reimagining how sellers reach and serve business customers, creating intelligent solutions that help them grow their B2B business on Amazon. From AI-powered Seller Central tools to smart business certifications, dynamic pricing capabilities, and advanced analytics, we're transforming how B2B selling happens. As an Applied Scientist II on our AB 3P Tech team, you'll drive the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning. You'll work with highly technical, entrepreneurial teams to: - Design and implement AI models that power the B2B selling experience - Lead the development of GenAI products that can handle Amazon-scale use cases - Drive research and implementation of advanced algorithms for human feedback and complex reasoning - Make strategic AI technology decisions and mentor technical talent - Own critical AI systems spanning from Seller Central to Amazon Business detail pages Join us in shaping the future of B2B selling - we're building applied AI solutions that businesses love and trust for their day-to-day success. If you are scrappy and bias for action is your favorite Leadership Principle, you'll fit right in as we innovate across the seller experience to create significant impact in this fast-growing business. Key job responsibilities Key job responsibilities: - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences About the team At Amazon Business Third Party (AB3P) Tech, we're revolutionizing B2B e-commerce by empowering sellers in the business marketplace. Our scope spans the complete B2B selling journey, from Seller Central to Amazon Business detail pages, cart, and checkout for merchant-fulfilled offers. Our entrepreneurial culture and global reach define us. We develop features across seller experience, delivery, certifications, fees, registration, and analytics, collaborating with worldwide teams and leveraging advanced AI technologies to continuously innovate. Working in true Day 1 spirit, we build next-generation solutions that shape the future of B2B commerce. Join us in building next-generation solutions that shape the future of B2B commerce.
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The Video Content Research team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with Prime Video marketing. Key job responsibilities In this role you will work closely with business stakeholders and technical peers (data scientists, economists and engineers) to develop causal marketing measurement models, analyze experiments and investigate customer, marketing and content related factors that drive engagement with Prime Video. You will create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, work with AWS to build and deploy machine learning models that impact Prime Video's marketing decisions. About the team The Video Content Research team uses machine learning, econometrics, and data science to optimize Amazon's marketing and content investments. We generate insights for Amazon's digital video strategy, partnering with finance, marketing, and content teams. We analyze customer behavior on Prime Video (marketing impressions, clicks on owned channels) to identify optimization opportunities.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, VA, Arlington
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
JP, 13, Tokyo
The JP Books - Manga team is looking for an Applied Scientist to participate in our AI related efforts to develop new prototypes and concepts that can then be translated into meaningful technologies impacting millions of customers. In this position, you will be expected to research, design and build/train/tune models and provide recommendations in areas including but not limited to natural language processing (automatic translation, summarization, extraction) and image processing (boundary detection, image understanding, image generation). The ideal candidate will have strong knowledge in the areas of Computer Vision, Translations and or Image understanding/generation. This is the ideal role if you are excited about leveraging science for tangible business impact to the Manga books business. Amazon encourages publications, and you will work within an international team of engineers, all based in Tokyo, Japan while collaborating with partner scientists in Tokyo and Seattle. Key job responsibilities As an Applied Scientist, your responsibilities will be: - Spot opportunities for innovation using AI for the JP Manga business, and publish to internal or external conferences. - Work closely with other Books scientists and engineers to build, review and improve your model design proposals. - Partner with product managers and other business stakeholders, documenting and explaining your progress in business reviews, and being the technical voice in charge of your product. - Be active in the community, participating in science education/growth activities for Books and Amazon JP - Keep up to date with scientific development in related field About the team Our team develops and owns the experience for Manga books on Amazon in Japan. We build products powering the solutions offered to publishers, authors and customers in Japan and worldwide. We interact with Product Managers and business stakeholders to develop features that allow us to better serve our customers. We place strong emphasis on continuous learning through internal mechanisms for our team to keep on growing their expertise and keep up with the state of the art. Our mission is to establish Amazon Manga as the go-to destination for digital and print Manga.