Syntiant NDP101
Syntiant's NDP architecture is built from the ground up to run deep learning algorithms. The company says its NDP101 neural decision processor achieves breakthrough performance by coupling computation and memory, and exploiting the inherent parallelism of deep learning and computing at only required numerical precision.
Credit: Syntiant

3 questions with Jeremy Holleman: How to design and develop ultra-low-power AI processors

Holleman, the chief scientist of Alexa Fund company Syntiant, explains why the company’s new architecture allows machine learning to be deployed practically anywhere.  

Editor’s Note: This article is the latest installment within a series Amazon Science is publishing related to the science behind products and services from companies in which Amazon has invested. Syntiant, founded in 2017, has shipped more than 10 million units to customers worldwide, and has obtained $65 million in funding from leading technology companies, including the Amazon Alexa Fund.

In late July, Amazon held its Alexa Live event, where the company introduced more than 50 features to help developers and device makers build ambient voice-computing experiences, and drive the growth of voice computing.

Jeremy Holleman, Syntiant's chief scientist
Jeremy Holleman is Syntiant's chief scientist, and a professor of electrical and computer engineering at the University of North Carolina at Charlotte.
Credit: Syntiant

The event included an Amazon Alexa Startups Showcase in which Syntiant, a semiconductor company founded in 2017, and based in Irvine, California, shared its vision for making voice the computing interface of the future.  

In 2017, Kurt Busch, Syntiant’s chief executive officer, and Jeremy Holleman, Syntiant’s chief scientist, and a professor of electrical and computer engineering at the University of North Carolina at Charlotte, were focused on finding an answer to the question: How do you optimize the performance of machine learning models on power- and cost-constrained hardware?

According to Syntiant, they — and other members of Syntiant’s veteran management team — had the idea for a processor architecture that could deliver 200 times the efficiency, 20 times the performance, and at half the cost of existing edge processors. One key to their approach — optimizing for memory access versus traditional processors’ focus on logic.

This insight, and others, led them to the formation of Syntiant, which for the past four years has been designing and developing ultra-low-power, high-performance, deep neural network processors for computing at the network’s edge, helping to reduce latency, and increase the privacy and security of power- and cost-constrained applications running on devices as small as earbuds, and as large as automobiles.

Syntiant’s processors enable always-on voice (AOV) control for most battery-powered devices, from cell phones and earbuds, to drones, laptops and other voice-activated products. The company’s Neural Decision Processors (NDPs) provide highly accurate wake word, command word and event detection in a tiny package with near-zero power consumption.

Syntiant CEO on the future of ambient computing
During the Amazon Alexa Startups Showcase, Kurt Busch, CEO of Syntiant, an Alexa Fund company, explained how they're using the latest in voice technology to invent the future of ambient computing, and why he thinks voice will be the next user interface.

Holleman is considered a leading authority on ultra-low-power integrated circuits, and directs the Integrated Silicon Systems Laboratory at the University of North Carolina, Charlotte, where he is an associate professor. He’s also is a coauthor of the book “Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces”, which was first published in 2011.

Amazon Science asked Holleman three questions about the challenges of designing and developing ultra-low-power AI processors, and why he believes voice will become the predominant user interface of the future.

Q. You are one of 22 authors on a paper, "MLPerf Tiny Benchmark", which has been accepted to the NeurIPS 2021 Conference. What does this benchmark suite comprise, and why is it significant to the tinyML field?

The MLPerf Tiny Benchmark actually includes four tests meant to measure the performance and efficiency of very small devices on ML inference: keyword spotting, person detection, image recognition, and anomaly detection. For each test, there is a reference model, and code to measure the latency and power on a reference platform.

I try to think about the benchmark from the standpoint of a system developer – someone building a device that needs some local intelligence. They have to figure out, with a given energy budget and system requirements, what solution is going to work for them. So they need to understand the power consumption and speed of different hardware. When you look at most of the information available, everyone measures their hardware on different things, so it’s really hard to compare. The benchmark makes it clear exactly what is being measured and – in the closed division – every submission is running the exact same model, so it’s a clear apples-to-apples comparison.

Then the open division takes the same principle – every submission does the same thing – but allows for some different tradeoffs by just defining the problem and allowing submitters to run different models that may take advantage of particular aspects of their hardware. So you wind up with a Pareto surface of accuracy, power, and speed.  I think this last part is particularly important in the “tiny” space because there is a lot of room to jointly optimize models, hardware, and features to get high-performing and high-efficiency end-to-end systems.

Q. What do you consider Syntiant’s key ingredients in your development and design of ultra-low-power AI processors, and how will your team’s work contribute to voice becoming the predominant user interface of the future?

I would say there are two major elements that have been key to our success. The first is, as I mentioned before, that edge ML requires tight coupling between the hardware and the algorithms. From the very beginning at Syntiant, we’ve had our silicon designers and our modelers working closely together. That shows up in office arrangement, with hardware and software groups all intermingled; in code and design reviews, really all across the company. And I think that’s paid off in outcomes. We see how easy it is to map a given algorithm to our hardware, because the hardware was designed to do all the hard work of coordinating memory access in a way that’s optimized for exactly the types of computation we see in ML workloads. And for the same reason, we see the benefits of that approach in power and performance.

The second big piece is that we realized that deep learning is still such a new field that the expertise required to deliver production-grade solutions is still very rare. It’s easy enough to download an MNIST or CIFAR demo, train it up and you think, “I’ve got this figured out!” But when you deploy a device to millions of people who interact with it on a daily basis, the job becomes much harder. You need to acquire data, validate it, debug models, and it’s a big job. We knew that for most customers, we couldn’t just toss a piece of silicon over the fence and leave the rest to them. That led us to put a lot of effort into building a complete pipeline addressing the data tasks, training, and evaluation, so we can provide a complete solution to customers who don’t have a ton of ML expertise in house.

Q. What in particular makes edge processing difficult?

On the hardware side, the big challenges are power and cost. Whether you’re talking about a watch, an earbud, or a phone, consumers have some pretty hard requirements for how long a battery needs to last – generally a day – and how much they will pay for something. And on the modeling side, edge devices find themselves in a tremendously diverse set of environments, so you need a voice assistant to recognize you not just in the kitchen or in the car, but on a factory floor, at a football game, and everywhere else you can imagine going.

Then those three things push against each other like the classical balloon analogy. If you push down cost by choosing a lower-end processor, it may not have the throughput to run the model quickly, so you run at a lower frame rate, under-sampling the input signal, and you miss events. Or you find a model that works well, and you run it fast enough, but then the power required to run it limits battery life. This tradeoff is especially difficult for features that are always on, like a wakeword detector, or person detection in a security camera. At Syntiant, we had to address all of these issues simultaneously, which is why it was so important to have all of our teams tightly connected, work through the use cases, and know how each piece affected all the other pieces.

Conventional general-purpose processors don’t have the efficiency to run strong models within the constraints that edge devices have. With our new architecture, powerful machine learning can be deployed practically anywhere for the first time.
Jeremy Holleman

Having done that work, the result is that you get the power of modern ML in tiny devices with almost no impact on the battery life. And the possibilities, especially for voice interfaces, is very exciting. We’ve all grown accustomed to interacting with our phone by voice and we’ve seen how often we want to do something but don’t have a free hand available for a tactile interface.

Syntiant’s technology is making it possible to bring that experience to smaller and cheaper devices with all of the processing happening locally. So many of the devices we use have useful information they can’t share with us because the interface would be too expensive. Imagine being able to say “TV remote, where are you?” or “Smoke alarm, why are you beeping?” and getting a clear and quick answer. We’ve forgotten that some annoying things we’ve gotten so used to can be fixed. And of course you don’t want all of the cost and the privacy concerns associated with sending all of that information to the cloud.

So we’re focused on putting that level of intelligence right in the device. To deliver that, we need all of these pieces to come together: the data pipeline, the models, and the hardware. Conventional general-purpose processors don’t have the efficiency to run strong models within the constraints that edge devices have. With our new architecture, powerful machine learning can be deployed practically anywhere for the first time.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Bellevue
How do you design and provide right incentives for millions of sellers that inbound and ship billions of customer orders? How do you measure sellers' response to /causal impacts of capacity control policies we implemented at Amazon using the state-of-the-art econometric techniques? How do you optimize Amazon’s third-party supply chain using new ideas never implemented at this scale to benefit millions of customers worldwide? How do you design and evaluate seller assistance to drive their success? If these type of questions get your mind racing, we want to hear from you.Supply Chain Optimization Technologies (SCOT) optimizes Amazon’s global supply chain end to end and build systems to deliver billions of products to our customers’ doorsteps faster every year while saving hundreds of millions of dollars using economics, operational research, machine learning, and scalable distributed software on the Cloud. Fulfillment by Amazon (FBA) is an Amazon service for our marketplace third party sellers, where our sellers leverage our world-class facilities and provide customers Prime delivery promise on all their goods.We are looking for the next outstanding economist to join our interdisciplinary team of data scientists, research scientists, applied scientists, economists. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable extracting insights from observational and experimental data. You translate insights into action through proofs-of-concept and partnerships with engineers and data scientists to productionize. You are excited to learn from and alongside seasoned analysts, scientists, engineers, and business leaders. You are an excellent communicator and effectively translate business ideas and technical findings into business action (and customer delight).Key job responsibilitiesProvide data-driven guidance and recommendations on strategic questions facing the FBA leadershipDesign and implement V0 models and experiments to kickstart new initiatives, thinking, and drive system-level changes across AmazonHelp build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challengesInfluence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.