Syntiant NDP101
Syntiant's NDP architecture is built from the ground up to run deep learning algorithms. The company says its NDP101 neural decision processor achieves breakthrough performance by coupling computation and memory, and exploiting the inherent parallelism of deep learning and computing at only required numerical precision.
Credit: Syntiant

3 questions with Jeremy Holleman: How to design and develop ultra-low-power AI processors

Holleman, the chief scientist of Alexa Fund company Syntiant, explains why the company’s new architecture allows machine learning to be deployed practically anywhere.  

Editor’s Note: This article is the latest installment within a series Amazon Science is publishing related to the science behind products and services from companies in which Amazon has invested. Syntiant, founded in 2017, has shipped more than 10 million units to customers worldwide, and has obtained $65 million in funding from leading technology companies, including the Amazon Alexa Fund.

In late July, Amazon held its Alexa Live event, where the company introduced more than 50 features to help developers and device makers build ambient voice-computing experiences, and drive the growth of voice computing.

Jeremy Holleman, Syntiant's chief scientist
Jeremy Holleman is Syntiant's chief scientist, and a professor of electrical and computer engineering at the University of North Carolina at Charlotte.
Credit: Syntiant

The event included an Amazon Alexa Startups Showcase in which Syntiant, a semiconductor company founded in 2017, and based in Irvine, California, shared its vision for making voice the computing interface of the future.  

In 2017, Kurt Busch, Syntiant’s chief executive officer, and Jeremy Holleman, Syntiant’s chief scientist, and a professor of electrical and computer engineering at the University of North Carolina at Charlotte, were focused on finding an answer to the question: How do you optimize the performance of machine learning models on power- and cost-constrained hardware?

According to Syntiant, they — and other members of Syntiant’s veteran management team — had the idea for a processor architecture that could deliver 200 times the efficiency, 20 times the performance, and at half the cost of existing edge processors. One key to their approach — optimizing for memory access versus traditional processors’ focus on logic.

This insight, and others, led them to the formation of Syntiant, which for the past four years has been designing and developing ultra-low-power, high-performance, deep neural network processors for computing at the network’s edge, helping to reduce latency, and increase the privacy and security of power- and cost-constrained applications running on devices as small as earbuds, and as large as automobiles.

Syntiant’s processors enable always-on voice (AOV) control for most battery-powered devices, from cell phones and earbuds, to drones, laptops and other voice-activated products. The company’s Neural Decision Processors (NDPs) provide highly accurate wake word, command word and event detection in a tiny package with near-zero power consumption.

Syntiant CEO on the future of ambient computing
During the Amazon Alexa Startups Showcase, Kurt Busch, CEO of Syntiant, an Alexa Fund company, explained how they're using the latest in voice technology to invent the future of ambient computing, and why he thinks voice will be the next user interface.

Holleman is considered a leading authority on ultra-low-power integrated circuits, and directs the Integrated Silicon Systems Laboratory at the University of North Carolina, Charlotte, where he is an associate professor. He’s also is a coauthor of the book “Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces”, which was first published in 2011.

Amazon Science asked Holleman three questions about the challenges of designing and developing ultra-low-power AI processors, and why he believes voice will become the predominant user interface of the future.

Q. You are one of 22 authors on a paper, "MLPerf Tiny Benchmark", which has been accepted to the NeurIPS 2021 Conference. What does this benchmark suite comprise, and why is it significant to the tinyML field?

The MLPerf Tiny Benchmark actually includes four tests meant to measure the performance and efficiency of very small devices on ML inference: keyword spotting, person detection, image recognition, and anomaly detection. For each test, there is a reference model, and code to measure the latency and power on a reference platform.

I try to think about the benchmark from the standpoint of a system developer – someone building a device that needs some local intelligence. They have to figure out, with a given energy budget and system requirements, what solution is going to work for them. So they need to understand the power consumption and speed of different hardware. When you look at most of the information available, everyone measures their hardware on different things, so it’s really hard to compare. The benchmark makes it clear exactly what is being measured and – in the closed division – every submission is running the exact same model, so it’s a clear apples-to-apples comparison.

Then the open division takes the same principle – every submission does the same thing – but allows for some different tradeoffs by just defining the problem and allowing submitters to run different models that may take advantage of particular aspects of their hardware. So you wind up with a Pareto surface of accuracy, power, and speed.  I think this last part is particularly important in the “tiny” space because there is a lot of room to jointly optimize models, hardware, and features to get high-performing and high-efficiency end-to-end systems.

Q. What do you consider Syntiant’s key ingredients in your development and design of ultra-low-power AI processors, and how will your team’s work contribute to voice becoming the predominant user interface of the future?

I would say there are two major elements that have been key to our success. The first is, as I mentioned before, that edge ML requires tight coupling between the hardware and the algorithms. From the very beginning at Syntiant, we’ve had our silicon designers and our modelers working closely together. That shows up in office arrangement, with hardware and software groups all intermingled; in code and design reviews, really all across the company. And I think that’s paid off in outcomes. We see how easy it is to map a given algorithm to our hardware, because the hardware was designed to do all the hard work of coordinating memory access in a way that’s optimized for exactly the types of computation we see in ML workloads. And for the same reason, we see the benefits of that approach in power and performance.

The second big piece is that we realized that deep learning is still such a new field that the expertise required to deliver production-grade solutions is still very rare. It’s easy enough to download an MNIST or CIFAR demo, train it up and you think, “I’ve got this figured out!” But when you deploy a device to millions of people who interact with it on a daily basis, the job becomes much harder. You need to acquire data, validate it, debug models, and it’s a big job. We knew that for most customers, we couldn’t just toss a piece of silicon over the fence and leave the rest to them. That led us to put a lot of effort into building a complete pipeline addressing the data tasks, training, and evaluation, so we can provide a complete solution to customers who don’t have a ton of ML expertise in house.

Q. What in particular makes edge processing difficult?

On the hardware side, the big challenges are power and cost. Whether you’re talking about a watch, an earbud, or a phone, consumers have some pretty hard requirements for how long a battery needs to last – generally a day – and how much they will pay for something. And on the modeling side, edge devices find themselves in a tremendously diverse set of environments, so you need a voice assistant to recognize you not just in the kitchen or in the car, but on a factory floor, at a football game, and everywhere else you can imagine going.

Then those three things push against each other like the classical balloon analogy. If you push down cost by choosing a lower-end processor, it may not have the throughput to run the model quickly, so you run at a lower frame rate, under-sampling the input signal, and you miss events. Or you find a model that works well, and you run it fast enough, but then the power required to run it limits battery life. This tradeoff is especially difficult for features that are always on, like a wakeword detector, or person detection in a security camera. At Syntiant, we had to address all of these issues simultaneously, which is why it was so important to have all of our teams tightly connected, work through the use cases, and know how each piece affected all the other pieces.

Conventional general-purpose processors don’t have the efficiency to run strong models within the constraints that edge devices have. With our new architecture, powerful machine learning can be deployed practically anywhere for the first time.
Jeremy Holleman

Having done that work, the result is that you get the power of modern ML in tiny devices with almost no impact on the battery life. And the possibilities, especially for voice interfaces, is very exciting. We’ve all grown accustomed to interacting with our phone by voice and we’ve seen how often we want to do something but don’t have a free hand available for a tactile interface.

Syntiant’s technology is making it possible to bring that experience to smaller and cheaper devices with all of the processing happening locally. So many of the devices we use have useful information they can’t share with us because the interface would be too expensive. Imagine being able to say “TV remote, where are you?” or “Smoke alarm, why are you beeping?” and getting a clear and quick answer. We’ve forgotten that some annoying things we’ve gotten so used to can be fixed. And of course you don’t want all of the cost and the privacy concerns associated with sending all of that information to the cloud.

So we’re focused on putting that level of intelligence right in the device. To deliver that, we need all of these pieces to come together: the data pipeline, the models, and the hardware. Conventional general-purpose processors don’t have the efficiency to run strong models within the constraints that edge devices have. With our new architecture, powerful machine learning can be deployed practically anywhere for the first time.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter


US, WA, Seattle
Job summaryAmazon brings buyers and sellers together. Our retail customers depend on us to give them access to every product at the best possible price. Our sellers depend on us to give them a platform to launch their business into every home and marketplace. Making this happen is the mission of every engineer in Amazon's North America Consumer (NAC) organization.To this end, the Science team is tasked with:· Organizing available data sources, and creating detailed dictionaries of data that can be used in future analyses.· Partnering with product teams in evaluating the financial and operational impact of new product offerings.· Conducting research into optimization and machine learning algorithms which can be applied to solve business problems.· Partnering with other scientists in evaluating algorithms and suggestions from a business view point.· Carrying out independent data-backed initiatives that can be leveraged later on in the fields of network organization, costing and financial modeling of processes.In order to execute the above mandate we are on the look out for smart and qualified Data Scientists who will own projects in partnership with product and research teams as well as operate autonomously on independent initiatives that are expected to unlock benefits in the future. A past background in Statistics is necessary, along with advanced proficiency in languages such as Python and R.Key job responsibilitiesAs a Data Scientist, you are able to use a range of advanced analytical methodologies to solve challenging business problems when the solution is unclear. You have a combination of business acumen, broad knowledge of statistics, deep understanding of ML algorithms, and an analytical mindset. You thrive in a collaborative environment, and are passionate about learning. Our team utilizes a variety of AWS tools such as Redshift, Sagemaker, Lambda, S3, and EC2 with a variety of skillsets in Linear and Discrete Optimization, ML, NLP, Forecasting, Probabilistic ML and Causal ML. You will bring knowledge in many of these domains along with your own specialties and skillsets.
US, CA, Pasadena
Job summaryThe Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is hiring a Quantum Research Scientist to join a multi-disciplinary, fast-paced team of theoretical and experimental physicists, materials scientists, and hardware and software engineers pushing the forefront of quantum computing. The candidate should demonstrate a thorough knowledge of experimental measurement techniques as well as quantum mechanics theory.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.Key job responsibilities* Contribute to fast-paced and agile research to help close the many orders of magnitude gap in gate error rates required for fault tolerant quantum computation* Design and perform experiments to characterize quantum devices in close collaboration with software and engineering teams* Develop models to understand and improve device performance* Effectively document results and communicate to a broad audience* Create robust software for implementation, automation, and analysis of measurements* Specify technical requirements in a cross-team collaboration using analytical arguments derived from physics theoryA day in the life* Analyze experimental data* Develop software to test and run new experiments on existing devices; collaborate with software engineers to achieve high code standard* Debug test setups to achieve high-quality data* Present results and cross-collaborate with others’ work* Perform code review for a colleague’s merge request
US, CA, Pasadena
Job summaryThe Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist in the Test and Measurement group. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental measurement techniques.Candidates with a track record of original scientific contributions will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.Key job responsibilitiesIn this role, you will drive improvements in qubit performance by characterizing the impact of environmental and material noise on qubit dynamics. This will require designing experiments to assess the role of specific noise sources, ensuring the collection of statistically significant data, analyzing the results, and preparing clear summaries for the team. Finally, you will work with hardware engineers, material scientists, and circuit designers to implement changes which mitigate the impact of the most significant noise sources.
US, MA, Cambridge
Job summaryThe Alexa Artificial Intelligence (AI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background, to help build industry-leading Speech and Language technology.Key job responsibilitiesAs an Applied Scientist with the Alexa AI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding.About the teamThe Alexa AI team has a mission to push the envelope in Natural Language Understanding (NLU). Specifically, we focus on incremental learning, continual learning and fairness, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Job summaryThe Alexa Artificial Intelligence (AI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to push the envelope in Natural Language Understanding (NLU), Audio Signal Processing, text-to-speech (TTS), and Dialog Management, in order to provide the best-possible experience for our customers.Key job responsibilitiesAs an Applied Scientist, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding.
US, MA, Cambridge
Job summaryWant to transform the way people enjoy music, video, and radio? Come join the team that made Amazon Music, Spotify, Hulu, Netflix, Pandora, available to Alexa customers. We are innovating the way our customers interact with entertainment in the living room, on the go, and in the car. We are at the epicenter of the future of entertainment.Alexa Entertainment is looking for an Applied Scientist as we build a team of talented and passionate scientists for ASR (automatic speech recognition) and NLU (natural language understanding). As a Research Scientist, you will participate in the design, development, and evaluation of models and ML (machine learning) technology so that customers have the magical experience of entertainment via Alexa. You will help lay the foundation to move from directed interactions to learned behaviors that enable Alexa to proactively take action on behalf of the customer. And, you will have the satisfaction of working on a product your friends and family can relate to, and want to use every day. Like the world of smart phones less than 10 years ago, this is a rare opportunity to have a giant impact on the way people live.You will be part of a team delivering features that are highly anticipated by media and well received by our customers.
US, VA, Arlington
Job summaryThe People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are looking for a research scientist with expertise in applying causal inference, experimental design, or causal machine learning techniques to topics in labor, personnel, education, health, public, or behavioral science. We are particularly interested in candidates with experience applying these skills to strategic problems with significant business and/or social policy impact.Candidates will work with economists, scientists and engineers to estimate and validate their models on large scale data, and will help business partners turn the results of their analysis into policies, programs, and actions that have a major impact on Amazon’s business and its workforce. We are looking for creative thinkers who can combine a strong scientific toolbox with a desire to learn from others, and who know how to execute and deliver on big ideas.You will conduct, direct, and coordinate all phases of research projects, including defining key research questions, developing models, designing and implementing appropriate data collection methods, executing analysis plans, and communicating results. You will earn trust from our business partners by collaborating with them to define key research questions, communicate scientific approaches and findings, listen to and incorporate their feedback, and deliver successful solutions.
US, WA, Seattle
Job summaryWant to work on one of Amazon’s most ambitious efforts? Time and Attendance (TAA) is leading the charge to build products that support our global workforce of passionate Amazonians!At Amazon we take seriously our commitment to pay employees accurately and on-time. While each line of business is responsible for knowing and driving down pay defects for their own employees, the centralized Perfect Pay team manages data stores and analytics, program oversight, cross-org technical and non-technical projects, and drives accountability across leaders.TAA is looking for a strong Data Scientist, Machine Learning for the Perfect Pay program to drive and own design and development of Machine Learning products to detect anomalies and risks to prevent pay errors before they happen. You will lead the team in designing anomaly and risk detection models to identify and prevent defects for Amazonians in their HR and pay data. You will work on all aspects of the product development life cycle, with a focus on the hardest problems around building scalable machine learning models with native AWS solutions that leverage tools like SageMaker, Glue, and Redshift to grow with Amazon. You will build high quality, scalable models which create immediate and impactful value for our Amazonians worldwide, while also ensuring that our products are evolving in a sustainable long-term direction.Who are we looking for to join our team?We are looking for a Data Science, machine learning specialist to build new and innovative systems that can predict pay defects before they happen and drive operational excellence across businesses. The HR systems and tools have never been analyzed together in context. The opportunity to automate improving the Amazonian experience using ML and AI span from improving the pay experience, to building risk prevention, to automatically triggering internal HR systems to correct anomalies. Getting the opportunity to cross-functionally explore data sets which support 1.4 million Amazonians for the first time is a unique opportunity. The ideal candidate will be experienced in innovating in domains without current ML/AI products. Domain experience in time and attendance and payroll, or Amazon operations field experience is useful but not required.Key job responsibilitiesMain responsibilities• Use statistical and machine learning techniques to create scalable anomaly detection and risk management systems• Analyzing and understanding large amounts of Amazon’s historical HR data for specific instances of defects or broader risk trends• Design, development, and evaluation of highly innovative models for anomaly detection and risk assessment• Working closely with data engineering team to scope scalable data architecture solutions that support your ML models• Working closely with software engineering teams to drive real-time model implementations and new feature creations• Working closely with operations staff to optimize defect prevention and model implementations• Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation• Research and implement novel machine learning and statistical approaches• Working closely with HR Business Partners to understand their use-cases for anomaly and risk detection as well as to define the data needed to carry out the work
US, WA, Bellevue
Job summaryAmazon relies on the latest technology to deliver millions of packages every day to our customers – on time, at low cost, and safely. The Middle Mile Planning Research & Optimization Science team builds complex science models and solutions that work across our vendors, warehouses and carriers to optimize both time & cost of getting the packages delivered. Our models are state-of-the-art, make business decisions impacting billions of dollars a year, and improve ordering and delivery experience for millions of online shoppers. That said, this remains a fast growing business and our journey has only started. Our mission is to build the most efficient and transportation network on the planet, using our science and technology as our biggest advantage. We aim to leverage cutting edge technologies in machine learning and operations research to grow our businesses.As a Machine Learning Applied Scientist, you’ll design, model, develop and implement state-of-the-art machine learning models and solutions used by Amazon worldwide. You will need to collaborate effectively with internal stakeholders and cross-functional teams to solve problems, create operational efficiencies, and deliver successfully against high organizational standards. As part of your role you will regularly interact with software engineering teams and business leadership. The focus of this role is to research, develop, and deploy predictive models that will inform and support our business, primarily in the areas of carrier safety.Tasks/ Responsibilities:· Lead and partner with the engineering and operations teams to drive modeling and technical design for complex business problems.· Develop accurate and scalable machine learning models and methods to solve our hardest predictive problems in transportation.· Lead complex modeling analyses to aid management in making key business decisions and set new policies.
US, NJ, Newark
Job summaryGood storytelling starts with great listening. At Audible, that means each role and every project has our audience in mind. Because the same people who design, develop, and deploy our products also happen to use them. To us, that speaks volumes.ABOUT THIS ROLEAudible is searching for an exceptional data scientist to join our economics team and drive the development of models at the intersection of machine learning and econometrics at scale. The Audible economics organization works across the business to measure and maximize the value Audible delivers to customers, creators, and communities globally. In this role, there will be a focus on partnering with our content and product teams to build a groundbreaking catalog of audiobooks and spoken-word entertainment, develop innovative tools to generate value for creators, and optimize content distribution and monetization.We are looking for someone experienced in building ML models at scale for complex prediction and optimization problems, who also has a background (or burgeoning interest!) in causal inference or interpretable machine learning. In addition to working with our staff economists and data scientists, you will also collaborate closely with scientists across Audible and partner teams at Amazon on problems pertinent to subscription businesses and the production of original media content.As a Data Scientist, you will...· Work with leadership in our content and product organizations to identify key analytical problems and opportunities – your work is expected to be a key input to our future content strategy.· Develop and maintain scalable, innovative data science and machine learning models that deliver actionable insights and results.· Collaborate with other data scientists, economists, and analysts at Audible to build data-driven solutions to key business problems.