Syntiant NDP101
Syntiant's NDP architecture is built from the ground up to run deep learning algorithms. The company says its NDP101 neural decision processor achieves breakthrough performance by coupling computation and memory, and exploiting the inherent parallelism of deep learning and computing at only required numerical precision.
Credit: Syntiant

3 questions with Jeremy Holleman: How to design and develop ultra-low-power AI processors

Holleman, the chief scientist of Alexa Fund company Syntiant, explains why the company’s new architecture allows machine learning to be deployed practically anywhere.  

Editor’s Note: This article is the latest installment within a series Amazon Science is publishing related to the science behind products and services from companies in which Amazon has invested. Syntiant, founded in 2017, has shipped more than 10 million units to customers worldwide, and has obtained $65 million in funding from leading technology companies, including the Amazon Alexa Fund.

In late July, Amazon held its Alexa Live event, where the company introduced more than 50 features to help developers and device makers build ambient voice-computing experiences, and drive the growth of voice computing.

Jeremy Holleman, Syntiant's chief scientist
Jeremy Holleman is Syntiant's chief scientist, and a professor of electrical and computer engineering at the University of North Carolina at Charlotte.
Credit: Syntiant

The event included an Amazon Alexa Startups Showcase in which Syntiant, a semiconductor company founded in 2017, and based in Irvine, California, shared its vision for making voice the computing interface of the future.  

In 2017, Kurt Busch, Syntiant’s chief executive officer, and Jeremy Holleman, Syntiant’s chief scientist, and a professor of electrical and computer engineering at the University of North Carolina at Charlotte, were focused on finding an answer to the question: How do you optimize the performance of machine learning models on power- and cost-constrained hardware?

According to Syntiant, they — and other members of Syntiant’s veteran management team — had the idea for a processor architecture that could deliver 200 times the efficiency, 20 times the performance, and at half the cost of existing edge processors. One key to their approach — optimizing for memory access versus traditional processors’ focus on logic.

This insight, and others, led them to the formation of Syntiant, which for the past four years has been designing and developing ultra-low-power, high-performance, deep neural network processors for computing at the network’s edge, helping to reduce latency, and increase the privacy and security of power- and cost-constrained applications running on devices as small as earbuds, and as large as automobiles.

Syntiant’s processors enable always-on voice (AOV) control for most battery-powered devices, from cell phones and earbuds, to drones, laptops and other voice-activated products. The company’s Neural Decision Processors (NDPs) provide highly accurate wake word, command word and event detection in a tiny package with near-zero power consumption.

Syntiant CEO on the future of ambient computing
During the Amazon Alexa Startups Showcase, Kurt Busch, CEO of Syntiant, an Alexa Fund company, explained how they're using the latest in voice technology to invent the future of ambient computing, and why he thinks voice will be the next user interface.

Holleman is considered a leading authority on ultra-low-power integrated circuits, and directs the Integrated Silicon Systems Laboratory at the University of North Carolina, Charlotte, where he is an associate professor. He’s also is a coauthor of the book “Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces”, which was first published in 2011.

Amazon Science asked Holleman three questions about the challenges of designing and developing ultra-low-power AI processors, and why he believes voice will become the predominant user interface of the future.

Q. You are one of 22 authors on a paper, "MLPerf Tiny Benchmark", which has been accepted to the NeurIPS 2021 Conference. What does this benchmark suite comprise, and why is it significant to the tinyML field?

The MLPerf Tiny Benchmark actually includes four tests meant to measure the performance and efficiency of very small devices on ML inference: keyword spotting, person detection, image recognition, and anomaly detection. For each test, there is a reference model, and code to measure the latency and power on a reference platform.

I try to think about the benchmark from the standpoint of a system developer – someone building a device that needs some local intelligence. They have to figure out, with a given energy budget and system requirements, what solution is going to work for them. So they need to understand the power consumption and speed of different hardware. When you look at most of the information available, everyone measures their hardware on different things, so it’s really hard to compare. The benchmark makes it clear exactly what is being measured and – in the closed division – every submission is running the exact same model, so it’s a clear apples-to-apples comparison.

Then the open division takes the same principle – every submission does the same thing – but allows for some different tradeoffs by just defining the problem and allowing submitters to run different models that may take advantage of particular aspects of their hardware. So you wind up with a Pareto surface of accuracy, power, and speed.  I think this last part is particularly important in the “tiny” space because there is a lot of room to jointly optimize models, hardware, and features to get high-performing and high-efficiency end-to-end systems.

Q. What do you consider Syntiant’s key ingredients in your development and design of ultra-low-power AI processors, and how will your team’s work contribute to voice becoming the predominant user interface of the future?

I would say there are two major elements that have been key to our success. The first is, as I mentioned before, that edge ML requires tight coupling between the hardware and the algorithms. From the very beginning at Syntiant, we’ve had our silicon designers and our modelers working closely together. That shows up in office arrangement, with hardware and software groups all intermingled; in code and design reviews, really all across the company. And I think that’s paid off in outcomes. We see how easy it is to map a given algorithm to our hardware, because the hardware was designed to do all the hard work of coordinating memory access in a way that’s optimized for exactly the types of computation we see in ML workloads. And for the same reason, we see the benefits of that approach in power and performance.

The second big piece is that we realized that deep learning is still such a new field that the expertise required to deliver production-grade solutions is still very rare. It’s easy enough to download an MNIST or CIFAR demo, train it up and you think, “I’ve got this figured out!” But when you deploy a device to millions of people who interact with it on a daily basis, the job becomes much harder. You need to acquire data, validate it, debug models, and it’s a big job. We knew that for most customers, we couldn’t just toss a piece of silicon over the fence and leave the rest to them. That led us to put a lot of effort into building a complete pipeline addressing the data tasks, training, and evaluation, so we can provide a complete solution to customers who don’t have a ton of ML expertise in house.

Q. What in particular makes edge processing difficult?

On the hardware side, the big challenges are power and cost. Whether you’re talking about a watch, an earbud, or a phone, consumers have some pretty hard requirements for how long a battery needs to last – generally a day – and how much they will pay for something. And on the modeling side, edge devices find themselves in a tremendously diverse set of environments, so you need a voice assistant to recognize you not just in the kitchen or in the car, but on a factory floor, at a football game, and everywhere else you can imagine going.

Then those three things push against each other like the classical balloon analogy. If you push down cost by choosing a lower-end processor, it may not have the throughput to run the model quickly, so you run at a lower frame rate, under-sampling the input signal, and you miss events. Or you find a model that works well, and you run it fast enough, but then the power required to run it limits battery life. This tradeoff is especially difficult for features that are always on, like a wakeword detector, or person detection in a security camera. At Syntiant, we had to address all of these issues simultaneously, which is why it was so important to have all of our teams tightly connected, work through the use cases, and know how each piece affected all the other pieces.

Conventional general-purpose processors don’t have the efficiency to run strong models within the constraints that edge devices have. With our new architecture, powerful machine learning can be deployed practically anywhere for the first time.
Jeremy Holleman

Having done that work, the result is that you get the power of modern ML in tiny devices with almost no impact on the battery life. And the possibilities, especially for voice interfaces, is very exciting. We’ve all grown accustomed to interacting with our phone by voice and we’ve seen how often we want to do something but don’t have a free hand available for a tactile interface.

Syntiant’s technology is making it possible to bring that experience to smaller and cheaper devices with all of the processing happening locally. So many of the devices we use have useful information they can’t share with us because the interface would be too expensive. Imagine being able to say “TV remote, where are you?” or “Smoke alarm, why are you beeping?” and getting a clear and quick answer. We’ve forgotten that some annoying things we’ve gotten so used to can be fixed. And of course you don’t want all of the cost and the privacy concerns associated with sending all of that information to the cloud.

So we’re focused on putting that level of intelligence right in the device. To deliver that, we need all of these pieces to come together: the data pipeline, the models, and the hardware. Conventional general-purpose processors don’t have the efficiency to run strong models within the constraints that edge devices have. With our new architecture, powerful machine learning can be deployed practically anywhere for the first time.

Research areas

Related content

IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Bellevue
Are you excited about customer-facing research and reinventing the way people think about long-held assumptions? At Amazon, we are constantly inventing and re-inventing to be the most customer-centric company in the world. To get there, we need exceptionally talented, bright, and driven people. Amazon is one of the most recognizable brand names in the world and we distribute millions of products each year to our loyal customers. A day in the life The ideal candidate will be responsible for quantitative data analysis, building models and prototypes for supply chain systems, and developing state-of-the-art optimization algorithms to scale. This team plays a significant role in various stages of the innovation pipeline from identifying business needs, developing new algorithms, prototyping/simulation, to implementation by working closely with colleagues in engineering, product management, operations, retail and finance. As a senior member of the research team, you will play an integral part on our Supply Chain team with the following technical and leadership responsibilities: * Interact with engineering, operations, science and business teams to develop an understanding and domain knowledge of processes, system structures, and business requirements * Apply domain knowledge and business judgment to identify opportunities and quantify the impact aligning research direction to business requirements and make the right judgment on research project prioritization * Develop scalable mathematical models to derive optimal or near-optimal solutions to existing and new supply chain challenges * Create prototypes and simulations to test devised solutions * Advocate technical solutions to business stakeholders, engineering teams, as well as executive-level decision makers * Work closely with engineers to integrate prototypes into production system * Create policy evaluation methods to track the actual performance of devised solutions in production systems, identify areas with potential for improvement and work with internal teams to improve the solution with new features * Mentor team members for their career development and growth * Present business cases and document models, analyses, and their results in order to influence important decisions About the team Our organization leads the innovation of Amazon’s ultra-fast grocery product initiatives. Our key vision is to transform the online grocery experience and provide a wide grocery selection in order to be the primary destination to fulfill customer’s food shopping needs. We are a team of passionate tech builders who work endlessly to make life better for our customers through amazing, thoughtful, and creative new grocery shopping experiences. To succeed, we need senior technical leaders to forge a path into the future by building innovative, maintainable, and scalable systems.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.