Physics-constrained machine learning for scientific computing

Amazon researchers draw inspiration from finite-volume methods and adapt neural operators to enforce conservation laws and boundary conditions in deep-learning models of physical systems.

Commercial applications of deep learning have been making headlines for years — never more so than this spring. More surprisingly, deep-learning methods have also shown promise for scientific computing, where they can be used to predict solutions to partial differential equations (PDEs). These equations are often prohibitively expensive to solve numerically; using data-driven methods has the potential to transform both scientific and engineering applications of scientific computing, including aerodynamics, ocean and climate, and reservoir modeling.

A fundamental challenge is that the predictions of deep-learning models trained on physical data typically ignore fundamental physical principles. Such models might, for instance, violate system conservation laws: the solution to a heat transfer problem may fail to conserve energy, or the solution to a fluid flow problem may fail to conserve mass. Similarly, a model’s solution may violate boundary conditions — say, allowing heat flow through an insulator at the boundary of a physical system. This can happen even when the model’s training data includes no such violations: at inference time, the model may simply extrapolate from patterns in the training data in an illicit way.

In a pair of recent papers accepted at the International Conference on Machine Learning (ICML) and the International Conference on Learning Representations (ICLR), we investigate the problems of adding known physics constraints to the predictive outputs of machine learning (ML) models when computing the solutions to PDEs.

Related content
Danielle Maddix Robinson's mathematics background helps inform robust models that can predict everything from retail demand to epidemiology.

The ICML paper, “Learning physical models that can respect conservation laws”, which we will present in July, focuses on satisfying conservation laws with black-box models. We show that, for certain types of challenging PDE problems with propagating discontinuities, known as shocks, our approach to constraining model outputs works better than its predecessors: it more sharply and accurately captures the physical solution and its uncertainty and yields better performance on downstream tasks.

In this paper, we collaborated with Derek Hansen, a PhD student in the Department of Statistics at the University of Michigan, who was an intern at AWS AI Labs at the time, and Michael Mahoney, an Amazon Scholar in Amazon’s Supply Chain Optimization Technologies organization and a professor of statistics at the University of California, Berkeley.

In a complementary paper we presented at this year’s ICLR, “Guiding continuous operator learning through physics-based boundary constraints”, we, together with Nadim Saad, an AWS AI Labs intern at the time and a PhD student at the Institute for Computational and Mathematical Engineering (ICME) at Stanford University, focus on enforcing physics through boundary conditions. The modeling approach we describe in this paper is a so-called constrained neural operator, and it exhibits up to a 20-fold performance improvement over previous operator models.

So that scientists working with models of physical systems can benefit from our work, we’ve released the code for the models described in both papers (conservation laws | boundary constraints) on GitHub. We also presented on both works in March 2023 at AAAI's symposium on Computational Approaches to Scientific Discovery.

Danielle Maddix Robinson on physics-constrained machine learning for scientific computing
A talk presented in April 2023 at the Machine Learning and Dynamical Systems Seminar at the Alan Turing Institute.

Conservation laws

Recent work in scientific machine learning (SciML) has focused on incorporating physical constraints into the learning process as part of the loss function. In other words, the physical information is treated as a soft constraint or regularization.

Related content
Hybrid model that combines machine learning with differential equations outperforms models that use either strategy by itself.

A main issue with these approaches is that they do not guarantee that the physical property of conservation is satisfied. To address this issue, in “Learning physical models that can respect conservation laws”, we propose ProbConserv, a framework for incorporating constraints into a generic SciML architecture. Instead of expressing conservation laws in the differential forms of PDEs, which are commonly used in SciML as extra terms in the loss function, ProbConserv converts them into their integral form. This allows us to use ideas from finite-volume methods to enforce conservation.

In finite-volume methods, a spatial domain — say, the region through which heat is propagating — is discretized into a finite set of smaller volumes called control volumes. The method maintains the balance of mass, energy, and momentum throughout this domain by applying the integral form of the conservation law locally across each control volume. Local conservation requires that the out-flux from one volume equals the in-flux to an adjacent volume. By enforcing the conservation law across each control volume, the finite-volume method guarantees global conservation across the whole domain, where the rate of change of the system’s total mass is given by the change in fluxes along the domain boundaries.

Flux Volume Edit-01_230525135151.jpg
The integral form of a conservation law states that the rate of change of the total mass of the system over a domain (Ω) is equal to the difference between the in-flux and out-flux along the domain boundaries (∂Ω).

More specifically, the first step in the ProbConserv method is to use a probabilistic machine learning model — such as a Gaussian process, attentive neural process (ANP), or ensembles of neural-network models — to estimate the mean and variance of the outputs of the physical model. We then use the integral form of the conservation law to perform a Bayesian update to the mean and covariance of the distribution of the solution profile such that it satisfies the conservation constraint exactly in the limit.

Related content
Learning the complete quantile function, which maps probabilities to variable values, rather than building separate models for each quantile level, enables better optimization of resource trade-offs.

In the paper, we provide a detailed analysis of ProbConserv’s application to the generalized porous-medium equation (GPME), a widely used parameterized family of PDEs. The GPME has been used in applications ranging from underground flow transport to nonlinear heat transfer to water desalination and beyond. By varying the PDE parameters, we can describe PDE problems with different levels of complexity, ranging from “easy” problems, such as parabolic PDEs that model smooth diffusion processes, to “hard” nonlinear hyperbolic-like PDEs with shocks, such as the Stefan problem, which has been used to model two-phase flow between water and ice, crystal growth, and more complex porous media such as foams.

For easy GPME variants, ProbConserv compares well to state-of-the-art competitors, and for harder GPME variants, it outperforms other ML-based approaches that do not guarantee volume conservation. ProbConserv seamlessly enforces physical conservation constraints, maintains probabilistic uncertainty quantification (UQ), and deals well with the problem of estimating shock propagation, which is difficult given ML models’ bias toward smooth and continuous behavior. It also effectively handles heteroskedasticity, or fluctuation in variables’ standard deviations. In all cases, it achieves superior predictive performance on downstream tasks, such as predicting shock location, which is a challenging problem even for advanced numerical solvers.

Examples

Conservation of mass.png
Conservation of mass can be violated by a black-box deep-learning model (here, the ANP), even when the PDE is applied as a soft constraint (here, SoftC-ANP) on the loss function, à la physics-informed neural networks (PINNs). This figure shows the variation of total mass over time for the smooth constant coefficient diffusion equation (an “easy” GPME example). The true mass remains zero, since there is zero net flux from the domain boundaries, and thus mass cannot be created or destroyed in the domain interior.
Uncertainty quantification.png
Density solution profiles with uncertainty quantification. In the “hard” version of the GPME problem, also known as the Stefan problem, the solution profile may contain a moving sharp interface in space, known as a shock. The shock here separates the region with fluid from the degenerate one with zero fluid density. The uncertainty is largest in the shock region and becomes smaller in the areas away from it. The main idea behind ProbConserv’s UQ method is to use the uncertainty in the unconstrained black box to modify the mean and covariance at the locations where the variance is largest, to satisfy the conservation constraint. The constant-variance assumption in the HardC-ANP baseline does not result in improvement on this hard task, while ProbConserv results in a better estimate of the solution at the shock and a threefold improvement in the mean squared error (MSE).
Shock position.png
Downstream task. Histogram of the posterior of the shock position computed by ProbConserv and the other baselines. While the baseline models skew the distribution of the shock position, ProbConserv computes a distribution that is well-centered around the true shock position. This illustrates that enforcing physical constraints such as conservation is necessary in order to provide reliable and accurate estimations of the shock position.

Boundary conditions

Boundary conditions (BCs) are physics-enforced constraints that solutions of PDEs must satisfy at specific spatial locations. These constraints carry important physical meaning and guarantee the existence and the uniqueness of PDE solutions. Current deep-learning-based approaches that aim to solve PDEs rely heavily on training data to help models learn BCs implicitly. There is no guarantee, though, that these models will satisfy the BCs during evaluation. In our ICLR 2023 paper, “Guiding continuous operator learning through physics-based boundary constraints”, we propose an efficient, hard-constrained, neural-operator-based approach to enforcing BCs.

Related content
Amazon quantum computing scientist recognized for ‘outstanding contributions to physics’.

Where most SciML methods (for example, PINNs) parameterize the solution to PDEs with a neural network, neural operators aim to learn the mapping from PDE coefficients or initial conditions to solutions. At the core of every neural operator is a kernel function, formulated as an integral operator, that describes the evolution of a physical system over time. For our study, we chose the Fourier neural operator (FNO) as an example of a kernel-based neural operator.

We propose a model we call the boundary-enforcing operator network (BOON). Given a neural operator representing a PDE solution, a training dataset, and prescribed BCs, BOON applies structural corrections to the neural operator to ensure that the predicted solution satisfies the system BCs.

BOON architecture full.png
BOON architectures. Kernel correction architectures for commonly used Dirichlet, Neumann, and periodic boundary conditions that carry different physical meanings.

We provide our refinement procedure and demonstrate that BOON’s solutions satisfy physics-based BCs, such as Dirichlet, Neumann, and periodic. We also report extensive numerical experiments on a wide range of problems including the heat and wave equations and Burgers's equation, along with the challenging 2-D incompressible Navier-Stokes equations, which are used in climate and ocean modeling. We show that enforcing these physical constraints results in zero boundary error and improves the accuracy of solutions on the interior of the domain. BOON’s correction method exhibits a 2-fold to 20-fold improvement over a given neural-operator model in relative L2 error.

Examples

Insulator at boundary.png
Nonzero flux at an insulator on the boundary. The solution to the unconstrained Fourier-neural-operator (FNO) model for the heat equation has a nonzero flux at the left insulating boundary, which means that it allows heat to flow through an insulator. This is in direct contradiction to the physics-enforced boundary constraint. BOON, which satisfies this so-called Neumann boundary condition, ensures that the gradient is zero at the insulator. Similarly, at the right boundary, we see that the FNO solution has a negative gradient at a positive heat source and that the BOON solution corrects this nonphysical result. Guaranteeing no violation of the underlying physics is critical to the practical adoption of these deep-learning models by practitioners in the field.
Stokes's second problem.png
Stokes’s second problem. This figure shows the velocity profile and corresponding absolute errors over time obtained by BOON (top). BOON improves the accuracy at the boundary, which, importantly, also improves accuracy on the interior of the domain compared to the unconstrained Fourier-neural-operator (FNO) model (bottom), where the errors at the boundary propagate inward over time.
Initial condition.png
2-D Navier-Stokes lid-driven cavity flow initial condition. The initial vorticity field (perpendicular to the screen), which is defined as the curl of the velocity field. At the initial time step, t = 0, the only nonzero component of the horizontal velocity is given by the top constant Dirichlet boundary condition, which drives the viscous incompressible flow at the later time steps. The other boundaries have the common no-slip Dirichlet boundary condition, which fixes the velocity to be zero at those locations.

Navier-Stokes lid-driven flow
2-D Navier-Stokes lid-driven cavity flow vorticity field. The vorticity field (perpendicular to the screen) within a square cavity filled with an incompressible fluid, which is induced by a fixed nonzero horizontal velocity prescribed by the Dirichlet boundary condition at the top boundary line for a 25-step (T=25) prediction until final time t = 2.
2-D Navier-Stokes lid-driven cavity flow relative error.
The L2 relative-error plots show significantly higher relative error over time for the data-driven Fourier neural operator (FNO) compared to that of our constrained BOON model on the Navier-Stokes lid-driven cavity flow problem for both a random test sample and the average over the test samples.

Acknowledgements: This work would have not been possible without the help of our coauthor Michael W. Mahoney, an Amazon Scholar; coauthors and PhD student interns Derek Hansen and Nadim Saad; and mentors Yuyang Wang and Margot Gerritsen.

Research areas

Related content

US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.