Physics-constrained machine learning for scientific computing

Amazon researchers draw inspiration from finite-volume methods and adapt neural operators to enforce conservation laws and boundary conditions in deep-learning models of physical systems.

Commercial applications of deep learning have been making headlines for years — never more so than this spring. More surprisingly, deep-learning methods have also shown promise for scientific computing, where they can be used to predict solutions to partial differential equations (PDEs). These equations are often prohibitively expensive to solve numerically; using data-driven methods has the potential to transform both scientific and engineering applications of scientific computing, including aerodynamics, ocean and climate, and reservoir modeling.

A fundamental challenge is that the predictions of deep-learning models trained on physical data typically ignore fundamental physical principles. Such models might, for instance, violate system conservation laws: the solution to a heat transfer problem may fail to conserve energy, or the solution to a fluid flow problem may fail to conserve mass. Similarly, a model’s solution may violate boundary conditions — say, allowing heat flow through an insulator at the boundary of a physical system. This can happen even when the model’s training data includes no such violations: at inference time, the model may simply extrapolate from patterns in the training data in an illicit way.

In a pair of recent papers accepted at the International Conference on Machine Learning (ICML) and the International Conference on Learning Representations (ICLR), we investigate the problems of adding known physics constraints to the predictive outputs of machine learning (ML) models when computing the solutions to PDEs.

Related content
Danielle Maddix Robinson's mathematics background helps inform robust models that can predict everything from retail demand to epidemiology.

The ICML paper, “Learning physical models that can respect conservation laws”, which we will present in July, focuses on satisfying conservation laws with black-box models. We show that, for certain types of challenging PDE problems with propagating discontinuities, known as shocks, our approach to constraining model outputs works better than its predecessors: it more sharply and accurately captures the physical solution and its uncertainty and yields better performance on downstream tasks.

In this paper, we collaborated with Derek Hansen, a PhD student in the Department of Statistics at the University of Michigan, who was an intern at AWS AI Labs at the time, and Michael Mahoney, an Amazon Scholar in Amazon’s Supply Chain Optimization Technologies organization and a professor of statistics at the University of California, Berkeley.

In a complementary paper we presented at this year’s ICLR, “Guiding continuous operator learning through physics-based boundary constraints”, we, together with Nadim Saad, an AWS AI Labs intern at the time and a PhD student at the Institute for Computational and Mathematical Engineering (ICME) at Stanford University, focus on enforcing physics through boundary conditions. The modeling approach we describe in this paper is a so-called constrained neural operator, and it exhibits up to a 20-fold performance improvement over previous operator models.

So that scientists working with models of physical systems can benefit from our work, we’ve released the code for the models described in both papers (conservation laws | boundary constraints) on GitHub. We also presented on both works in March 2023 at AAAI's symposium on Computational Approaches to Scientific Discovery.

Danielle Maddix Robinson on physics-constrained machine learning for scientific computing
A talk presented in April 2023 at the Machine Learning and Dynamical Systems Seminar at the Alan Turing Institute.

Conservation laws

Recent work in scientific machine learning (SciML) has focused on incorporating physical constraints into the learning process as part of the loss function. In other words, the physical information is treated as a soft constraint or regularization.

Related content
Hybrid model that combines machine learning with differential equations outperforms models that use either strategy by itself.

A main issue with these approaches is that they do not guarantee that the physical property of conservation is satisfied. To address this issue, in “Learning physical models that can respect conservation laws”, we propose ProbConserv, a framework for incorporating constraints into a generic SciML architecture. Instead of expressing conservation laws in the differential forms of PDEs, which are commonly used in SciML as extra terms in the loss function, ProbConserv converts them into their integral form. This allows us to use ideas from finite-volume methods to enforce conservation.

In finite-volume methods, a spatial domain — say, the region through which heat is propagating — is discretized into a finite set of smaller volumes called control volumes. The method maintains the balance of mass, energy, and momentum throughout this domain by applying the integral form of the conservation law locally across each control volume. Local conservation requires that the out-flux from one volume equals the in-flux to an adjacent volume. By enforcing the conservation law across each control volume, the finite-volume method guarantees global conservation across the whole domain, where the rate of change of the system’s total mass is given by the change in fluxes along the domain boundaries.

Flux volume.jpg
The integral form of a conservation law states that the rate of change of the total mass of the system over a domain (Ω) is equal to the difference between the in-flux and out-flux along the domain boundaries (∂Ω).

More specifically, the first step in the ProbConserv method is to use a probabilistic machine learning model — such as a Gaussian process, attentive neural process (ANP), or ensembles of neural-network models — to estimate the mean and variance of the outputs of the physical model. We then use the integral form of the conservation law to perform a Bayesian update to the mean and covariance of the distribution of the solution profile such that it satisfies the conservation constraint exactly in the limit.

Related content
Learning the complete quantile function, which maps probabilities to variable values, rather than building separate models for each quantile level, enables better optimization of resource trade-offs.

In the paper, we provide a detailed analysis of ProbConserv’s application to the generalized porous-medium equation (GPME), a widely used parameterized family of PDEs. The GPME has been used in applications ranging from underground flow transport to nonlinear heat transfer to water desalination and beyond. By varying the PDE parameters, we can describe PDE problems with different levels of complexity, ranging from “easy” problems, such as parabolic PDEs that model smooth diffusion processes, to “hard” nonlinear hyperbolic-like PDEs with shocks, such as the Stefan problem, which has been used to model two-phase flow between water and ice, crystal growth, and more complex porous media such as foams.

For easy GPME variants, ProbConserv compares well to state-of-the-art competitors, and for harder GPME variants, it outperforms other ML-based approaches that do not guarantee volume conservation. ProbConserv seamlessly enforces physical conservation constraints, maintains probabilistic uncertainty quantification (UQ), and deals well with the problem of estimating shock propagation, which is difficult given ML models’ bias toward smooth and continuous behavior. It also effectively handles heteroskedasticity, or fluctuation in variables’ standard deviations. In all cases, it achieves superior predictive performance on downstream tasks, such as predicting shock location, which is a challenging problem even for advanced numerical solvers.

Examples

Conservation of mass.png
Conservation of mass can be violated by a black-box deep-learning model (here, the ANP), even when the PDE is applied as a soft constraint (here, SoftC-ANP) on the loss function, à la physics-informed neural networks (PINNs). This figure shows the variation of total mass over time for the smooth constant coefficient diffusion equation (an “easy” GPME example). The true mass remains zero, since there is zero net flux from the domain boundaries, and thus mass cannot be created or destroyed in the domain interior.
Uncertainty quantification.png
Density solution profiles with uncertainty quantification. In the “hard” version of the GPME problem, also known as the Stefan problem, the solution profile may contain a moving sharp interface in space, known as a shock. The shock here separates the region with fluid from the degenerate one with zero fluid density. The uncertainty is largest in the shock region and becomes smaller in the areas away from it. The main idea behind ProbConserv’s UQ method is to use the uncertainty in the unconstrained black box to modify the mean and covariance at the locations where the variance is largest, to satisfy the conservation constraint. The constant-variance assumption in the HardC-ANP baseline does not result in improvement on this hard task, while ProbConserv results in a better estimate of the solution at the shock and a threefold improvement in the mean squared error (MSE).
Shock position.png
Downstream task. Histogram of the posterior of the shock position computed by ProbConserv and the other baselines. While the baseline models skew the distribution of the shock position, ProbConserv computes a distribution that is well-centered around the true shock position. This illustrates that enforcing physical constraints such as conservation is necessary in order to provide reliable and accurate estimations of the shock position.

Boundary conditions

Boundary conditions (BCs) are physics-enforced constraints that solutions of PDEs must satisfy at specific spatial locations. These constraints carry important physical meaning and guarantee the existence and the uniqueness of PDE solutions. Current deep-learning-based approaches that aim to solve PDEs rely heavily on training data to help models learn BCs implicitly. There is no guarantee, though, that these models will satisfy the BCs during evaluation. In our ICLR 2023 paper, “Guiding continuous operator learning through physics-based boundary constraints”, we propose an efficient, hard-constrained, neural-operator-based approach to enforcing BCs.

Related content
Amazon quantum computing scientist recognized for ‘outstanding contributions to physics’.

Where most SciML methods (for example, PINNs) parameterize the solution to PDEs with a neural network, neural operators aim to learn the mapping from PDE coefficients or initial conditions to solutions. At the core of every neural operator is a kernel function, formulated as an integral operator, that describes the evolution of a physical system over time. For our study, we chose the Fourier neural operator (FNO) as an example of a kernel-based neural operator.

We propose a model we call the boundary-enforcing operator network (BOON). Given a neural operator representing a PDE solution, a training dataset, and prescribed BCs, BOON applies structural corrections to the neural operator to ensure that the predicted solution satisfies the system BCs.

BOON architecture full.png
BOON architectures. Kernel correction architectures for commonly used Dirichlet, Neumann, and periodic boundary conditions that carry different physical meanings.

We provide our refinement procedure and demonstrate that BOON’s solutions satisfy physics-based BCs, such as Dirichlet, Neumann, and periodic. We also report extensive numerical experiments on a wide range of problems including the heat and wave equations and Burgers's equation, along with the challenging 2-D incompressible Navier-Stokes equations, which are used in climate and ocean modeling. We show that enforcing these physical constraints results in zero boundary error and improves the accuracy of solutions on the interior of the domain. BOON’s correction method exhibits a 2-fold to 20-fold improvement over a given neural-operator model in relative L2 error.

Examples

Insulator at boundary.png
Nonzero flux at an insulator on the boundary. The solution to the unconstrained Fourier-neural-operator (FNO) model for the heat equation has a nonzero flux at the left insulating boundary, which means that it allows heat to flow through an insulator. This is in direct contradiction to the physics-enforced boundary constraint. BOON, which satisfies this so-called Neumann boundary condition, ensures that the gradient is zero at the insulator. Similarly, at the right boundary, we see that the FNO solution has a negative gradient at a positive heat source and that the BOON solution corrects this nonphysical result. Guaranteeing no violation of the underlying physics is critical to the practical adoption of these deep-learning models by practitioners in the field.
Stokes's second problem.png
Stokes’s second problem. This figure shows the velocity profile and corresponding absolute errors over time obtained by BOON (top). BOON improves the accuracy at the boundary, which, importantly, also improves accuracy on the interior of the domain compared to the unconstrained Fourier-neural-operator (FNO) model (bottom), where the errors at the boundary propagate inward over time.
Initial condition.png
2-D Navier-Stokes lid-driven cavity flow initial condition. The initial vorticity field (perpendicular to the screen), which is defined as the curl of the velocity field. At the initial time step, t = 0, the only nonzero component of the horizontal velocity is given by the top constant Dirichlet boundary condition, which drives the viscous incompressible flow at the later time steps. The other boundaries have the common no-slip Dirichlet boundary condition, which fixes the velocity to be zero at those locations.

Navier-Stokes lid-driven flow
2-D Navier-Stokes lid-driven cavity flow vorticity field. The vorticity field (perpendicular to the screen) within a square cavity filled with an incompressible fluid, which is induced by a fixed nonzero horizontal velocity prescribed by the Dirichlet boundary condition at the top boundary line for a 25-step (T=25) prediction until final time t = 2.
2-D Navier-Stokes lid-driven cavity flow relative error.
The L2 relative-error plots show significantly higher relative error over time for the data-driven Fourier neural operator (FNO) compared to that of our constrained BOON model on the Navier-Stokes lid-driven cavity flow problem for both a random test sample and the average over the test samples.

Acknowledgements: This work would have not been possible without the help of our coauthor Michael W. Mahoney, an Amazon Scholar; coauthors and PhD student interns Derek Hansen and Nadim Saad; and mentors Yuyang Wang and Margot Gerritsen.

Research areas

Related content

US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.
JP, 13, Tokyo
Our mission is to help every vendor drive the most significant impact selling on Amazon. Our team invent, test and launch some of the most innovative services, technology, processes for our global vendors. Our new AVS Professional Services (ProServe) team will go deep with our largest and most sophisticated vendor customers, combining elite client-service skills with cutting edge applied science techniques, backed up by Amazon’s 20+ years of experience in Japan. We start from the customer’s problem and work backwards to apply distinctive results that “only Amazon” can deliver. Amazon is looking for a talented and passionate Applied Science Manager to manage our growing team of Applied Scientists and Business Intelligence Engineers to build world class statistical and machine learning models to be delivered directly to our largest vendors, and working closely with the vendors' senior leaders. The Applied Science Manager will set the strategy for the services to invent, collaborating with the AVS business consultants team to determine customer needs and translating them to a science and development roadmap, and finally coordinating its execution through the team. In this position, you will be part of a larger team touching all areas of science-based development in the vendor domain, not limited to Japan-only products, but collaborating with worldwide science and business leaders. Our current projects touch on the areas of causal inference, reinforcement learning, representation learning, anomaly detection, NLP and forecasting. As the AVS ProServe Applied Science Manager, you will be empowered to expand your scope of influence, and use ProServe as an incubator for products that can be expanded to all Amazon vendors, worldwide. We place strong emphasis on talent growth. As the Applied Science Manager, you will be expected in actively growing future Amazon science leaders, and providing mentoring inside and outside of your team. Key job responsibilities The Applied Science Manager is accountable for: (1) Creating a vision, a strategy, and a roadmap tackling the most challenging business questions from our leading vendors, assess quantitatively their feasibility and entitlement, and scale their scope beyond the ProServe team. (2) Coordinate execution of the roadmap, through direct reports, consisting of scientists and business intelligence engineers. (3) Grow and manage a technical team, actively mentoring, developing, and promoting team members. (4) Work closely with other science managers, program/product managers, and business leadership worldwide to scope new areas of growth, creating new partnerships, and proposing new business initiatives. (5) Act as a technical supervisor, able to assess scientific direction, technical design documents, and steer development efforts to maximize project delivery.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Supply team (within Sponsored Products) is looking for an Applied Scientist to join a fast-growing team with the mandate of creating new ad experiences that elevate the shopping experience for hundreds of millions customers worldwide. The Applied Scientist will take end-to-end ownership of driving new product/feature innovation by applying advanced statistical and machine learning models. The role will handle petabytes of unstructured data (images, text, videos) to extract insights into what metadata can be useful for us to highlight to simplify purchase decisions, and propose new experiences that increase shopper engagement. Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Key job responsibilities As an Applied Scientist on this team you will: Build machine learning models and perform data analysis to deliver scalable solutions to business problems. Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. Research new predictive learning approaches for the sponsored products business. Write production code to bring models into production. A day in the life You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We are seeking a Principal Scientist with deep expertise in Search. Your responsibility will be to advance the state-of-the-art for search science that leads to world-class products that impact Amazon's customers. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team This is a position on Core Ranking and Experimentation team in Palo Alto, CA. The team works on a variety of topics in search ranking and relevance, such as multi-objective optimization, personalization, and fast online experimentation. We work closely with teams in various parts of the stack to ensure that our science is translated to customer facing products.
US, WA, Bellevue
Amazon is looking for a passionate, talented, and inventive Applied Scientists with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Automatic Speech Recognition (ASR), Machine Translation (MT), Natural Language Understanding (NLU), Machine Learning (ML) and Computer Vision (CV). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use of speech and language technology. You will gain hands on experience with Amazon’s heterogeneous speech, text, and structured data sources, and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in all areas of human language technology: ASR, MT, NLU, text-to-speech (TTS), and Dialog Management, in addition to Computer Vision.
IN, KA, Bangalore
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. The ATT team, based in Bangalore, is responsible for ensuring that ads are compliant to world-wide advertising policies and are of high quality, leading to higher conversion for the advertisers and providing a great experience for the shoppers. Machine learning, particularly multi-modal data understanding, is fundamental to the way we drive our business, meet our goals and satisfy our customers. ATT team invests in researching and developing state of art models that analyze various type of ad assets – text, audio, images and videos - to ensure compliance to advertising policies. We also help advertisers create more successful ads by creating ML models to assist ad generation as well as to provide data-driven interpretable insights. Key job responsibilities Major responsibilities · Deliver key goals to enhance advertiser experience and protect shopper trust by innovative use of computer vision, NLP and statistical techniques · Drive core business analytics and data science explorations to inform key business decisions and algorithm roadmap · Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation · Hire and develop top talent in machine learning and data science and accelerate the pace of innovation in the group · Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production
US, WA, Seattle
We are seeking a talented applied researcher to join the Search team responsible for developing reinforcement learning systems for Amazon's shopping experience and delivering it to millions of customers. We believe that shopping on Amazon should be simple, delightful, and full of "wow" moments for everyone.
US, NY, New York
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team Amazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. Lead marketplace design and development based on economic theory and data analysis. Provide technical and scientific guidance to team members. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. Collaborate with business and software teams across Amazon Ads. Stay up to date with recent scientific publications relevant to the team. Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. Amazon’s large scale brings with it unique problems to solve in designing, testing, and deploying relevance models. We are seeking a strong applied Scientist to join the Experimentation Infrastructure and Methods team. This team’s charter is to innovate and evaluate ranking at Amazon Search. In practice, we aim to create infrastructure and metrics, enable new experimental methods, and do proof-of-concept experiments, that enable Search Relevance teams to introduce new features faster, reduce the cost of experimentation, and deliver faster against Search goals. Key job responsibilities You will build search ranking systems and evaluation framework that extend to Amazon scale -- thousands of product types, billions of queries, and hundreds of millions of customers spread around the world. As a Senior Applied Scientist you will find the next set of big improvements to ranking evaluation, get your hands dirty by building models to help understand complexities of customer behavior, and mentor junior engineers and scientists. In addition to typical topics in ranking, we are particularly interested in evaluation, feature selection, explainability. A day in the life Our primary focus is improving search ranking systems. On a day-to-day this means building ML models, analyzing data from your recent A/B tests, and guiding teams on best practices. You will also find yourself in meetings with business and tech leaders at Amazon communicating your next big initiative. About the team We are a team consisting of software engineers and applied scientists. Our interests and activities span machine learning for better ranking, experimentation, statistics for better decision making, and infrastructure to make it all happen efficiently at scale.