Bringing the power of deep learning to data in tables

Amazon’s TabTransformer model is now available through SageMaker JumpStart and the official release of the Keras open-source library.

In recent years, deep neural networks have been responsible for most top-performing AI systems. In particular, natural-language processing (NLP) applications are generally built atop Transformer-based language models such as BERT.

One exception to the deep-learning revolution has been applications that rely on data stored in tables, where machine learning approaches based on decision trees have tended to work better.

At Amazon Web Services, we have been working to extend Transformers from NLP to table data with TabTransformer, a novel, deep, tabular, data-modeling architecture for supervised and semi-supervised learning.

Related content
Novel pretraining method enables increases of 5% to 14% on five different evaluation metrics.

Starting today, TabTransformer is available through Amazon SageMaker JumpStart, where it can be used for both classification and regression tasks. TabTransformer can be accessed through the SageMaker JumpStart UI inside of SageMaker Studio or through Python code using SageMaker Python SDK. To get started with TabTransformer on SageMaker JumpStart, please refer to the program documentation.

We are also thrilled to see that TabTransformer has gained attention from people across industries: it has been incorporated into the official repository of Keras, a popular open-source software library for working with deep neural networks, and it has featured in posts on Towards Data Science and Medium. We also presented a paper on the work at the ICLR 2021 Workshop on Weakly Supervised Learning.

The TabTransformer solution

TabTransformer uses Transformers to generate robust data representations — embeddings — for categorical variables, or variables that take on a finite set of discrete values, such as months of the year. Continuous variables (such as numerical values) are processed in a parallel stream.

We exploit a successful methodology from NLP in which a model is pretrained on unlabeled data, to learn a general embedding scheme, then fine-tuned on labeled data, to learn a particular task. We find that this approach increases the accuracy of TabTransformer, too.

In experiments on 15 publicly available datasets, we show that TabTransformer outperforms the state-of-the-art deep-learning methods for tabular data by at least 1.0% on mean AUC, the area under the receiver-operating curve that plots false-positive rate against false-negative rate. We also show that it matches the performance of tree-based ensemble models.

Related content
The Amazon-sponsored FEVEROUS dataset and shared task challenge researchers to create more advanced fact-checking systems.

In the semi-supervised setting, when labeled data is scarce, DNNs generally outperform decision-tree-based models, because they are better able to take advantage of unlabeled data. In our semi-supervised experiments, all of the DNNs outperformed decision trees, but with our novel unsupervised pre-training procedure, TabTransformer demonstrated an average 2.1% AUC lift over the strongest DNN benchmark.

Finally, we also demonstrate that the contextual embeddings learned from TabTransformer are highly robust against both missing and noisy data features and provide better interpretability.

Tabular data

To get a sense of the problem our method addresses, consider a table where the rows represent different samples and the columns represent both sample features (predictor variables) and the sample label (the target variable). TabTransformer takes the features of each sample as input and generates an output to best approximate the corresponding label.

In a practical industry setting, where the labels are partially available (i.e., semi-supervised learning scenarios), TabTransformer can be pre-trained on all the samples without any labels and fine-tuned on the labeled samples.

Additionally, companies usually have one large table (e.g., describing customers/products) that contains multiple target variables, and they are interested in analyzing this data in multiple ways. TabTransformer can be pre-trained on the large number of unlabeled samples once and fine-tuned multiple times for multiple target variables.

The architecture of TabTransformer is shown below. In our experiments, we use standard feature-engineering techniques to transform data types such as text, zip codes, and IP addresses into either numeric or categorical features.

Graphic shows the architecture of TabTransformer.
The architecture of TabTransformer.

Pretraining procedures

We explore two different types of pre-training procedures: masked language modeling (MLM) and replaced-token detection (RTD). In MLM, for each sample, we randomly select a certain portion of features to be masked and use the embeddings of the other features to reconstruct the masked features. In RTD, for each sample, instead of masking features, we replace them with random values chosen from the same columns.

In addition to comparing TabTransformer to baseline models, we conducted a study to demonstrate the interpretability of the embeddings produced by our contextual-embedding component.

In that study, we took contextual embeddings from different layers of the Transformer and computed a t-distributed stochastic neighbor embedding (t-SNE) to visualize their similarity in function space. More precisely, after training TabTransformer, we pass the categorical features in the test data through our trained model and extract all contextual embeddings (across all columns) from a certain layer of the Transformer. The t-SNE algorithm is then used to reduce each embedding to a 2-D point in the t-SNE plot.

T-SNE plots of learned embeddings for categorical features in the dataset BankMarketing. Left: The embeddings generated from the last layer of the Transformer. Center: The embeddings before being passed into the Transformer. Right: The embeddings learned by the model without the Transformer layers.
T-SNE plots of learned embeddings for categorical features in the dataset BankMarketing. Left: The embeddings generated from the last layer of the Transformer. Center: The embeddings before being passed into the Transformer. Right: The embeddings learned by the model without the Transformer layers.

The figure above shows the 2-D visualization of embeddings from the last layer of the Transformer for the dataset bank marketing. We can see that semantically similar classes are close to each other and form clusters (annotated by a set of labels) in the embedding space.

For example, all of the client-based features (colored markers), such as job, education level, and marital status, stay close to the center, and non-client-based features (gray markers), such as month (last contact month of the year) and day (last contact day of the week), lie outside the central area. In the bottom cluster, the embedding of having a housing loan stays close to that of having defaulted, while the embeddings of being a student, single marital status, not having a housing loan, and tertiary education level are close to each other.

Related content
Watch the keynote presentation by Alex Smola, AWS vice president and distinguished scientist, presented at the AutoML@ICML2020 workshop.

The center figure is the t-SNE plot of embeddings before being passed through the Transformer (i.e., from layer 0). The right figure is the t-SNE plot of the embeddings the model produces when the Transformer layers are removed, converting it into an ordinary multilayer perceptron (MLP). In those plots, we do not observe the types of patterns seen in the left plot.

Finally, we conduct extensive experiments on 15 publicly available datasets, using both supervised and semi-supervised learning. In the supervised-learning experiment, TabTransformer matched the performance of the state-of-the-art gradient-boosted decision-tree (GBDT) model and significantly outperformed the prior DNN models TabNet and Deep VIB.

Model nameMean AUC (%)
TabTransformer82.8 ± 0.4
MLP81.8 ± 0.4
Gradient-boosted decision trees82.9 ± 0.4
Sparse MLP81.4 ± 0.4
Logistic regression80.4 ± 0.4
TabNet77.1 ± 0.5
Deep VIB80.5 ± 0.4

Model performance with supervised learning. The evaluation metric is mean standard deviation of AUC score over the 15 datasets for each model. The larger the number, the better the result. The top two numbers are bold.

In the semi-supervised-learning experiment, we pretrain two TabTransformer models on the entire unlabeled set of training data, using the MLM and RTD methods respectively; then we fine-tune both models on labeled data.

As baselines, we use the semi-supervised learning methods pseudo labeling and entropy regularization to train both a TabTransformer network and an ordinary MLP. We also train a gradient-boosted-decision-tree model using pseudo-labeling and an MLP using a pretraining method called the swap-noise denoising autoencoder.

# Labeled data50200500
TabTransformer-RTD66.6 ± 0.670.9 ± 0.673.1 ± 0.6
TabTransformer-MLM66.8 ± 0.671.0 ± 0.672.9 ± 0.6
ER-MLP65.6 ± 0.669.0 ± 0.671.0 ± 0.6
PL-MLP65.4 ± 0.668.8 ± 0.671.0 ± 0.6
ER-TabTransformer62.7 ± 0.667.1 ± 0.669.3 ± 0.6
PL-TabTransformer63.6 ± 0.667.3 ± 0.769.3 ± 0.6
DAE65.2 ± 0.568.5 ± 0.671.0 ± 0.6
PL-GBDT56.5 ± 0.563.1 ± 0.666.5 ± 0.7

Semi-supervised-learning results on six datasets, each with more than 30,000 unlabeled data points, and different number of labeled data points. Evaluation metric is mean AUC in percentage.

# Labeled data50200500
TabTransformer-RTD78.6 ± 0.681.6 ± 0.583.4 ± 0.5
TabTransformer-MLM78.5 ± 0.681.0 ± 0.682.4 ± 0.5
ER-MLP79.4 ± 0.681.1 ± 0.682.3 ± 0.6
PL-MLP79.1 ± 0.681.1 ± 0.682.0 ± 0.6
ER-TabTransformer77.9 ± 0.681.2 ± 0.682.1 ± 0.6
PL-TabTransformer77.8 ± 0.681.0 ± 0.682.1 ± 0.6
DAE78.5 ± 0.780.7 ± 0.682.2 ± 0.6
PL-GBDT73.4 ± 0.778.8 ± 0.681.3 ± 0.6

Semi-supervised learning results on nine datasets, each with fewer than 30,000 data points, and different numbers of labeled data points. Evaluation metric is mean AUC in percentage.

To gauge relative performance with different amounts of unlabeled data, we split the set of 15 datasets into two subsets. The first set consists of the six datasets that containing more than 30,000 data points. The second set includes the remaining nine datasets.

When the amount of unlabeled data is large, TabTransformer-RTD and TabTransformer-MLM significantly outperform all the other competitors. Particularly, TabTransformer-RTD/MLM improvement are at least 1.2%, 2.0%, and 2.1% on mean AUC for the scenarios of 50, 200, and 500 labeled data points, respectively. When the number of unlabeled data becomes smaller, as shown in Table 3, TabTransformer-RTD still outperforms most of its competitors but with a marginal improvement.

Acknowledgments: Ashish Khetan, Milan Cvitkovic, Zohar Karnin

Related content

US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience. We are open to hiring candidates to work out of one of the following locations: Denver, CO, USA | Seattle, WA, USA
US, WA, Seattle
Amazon is investing heavily in building a world class advertising business and developing a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses for driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Key job responsibilities Search Supply and Experiences, within Sponsored Products, is seeking a Senior Data Scientist to join a fast growing team with the mandate of creating new ads experience that elevates the shopping experience for our hundreds of millions customers worldwide. We are looking for a top analytical mind capable of understanding our complex ecosystem of advertisers participating in a pay-per-click model– and leveraging this knowledge to help turn the flywheel of the business. As a Senior Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with ambiguity. - Manage and drive the technical and analytical aspects of Advertiser segmentation; continually advance approach and methods. - Write code (Python, R, Scala, etc.) to analyze data and build statistical models to solve specific business problems - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support decision making. - Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. - Provide requirements to develop analytic capabilities, platforms, and pipelines. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose solution for the business problem you defined - Conduct written and verbal presentation to share insights and recommendations to audiences of varying levels of technical sophistication. - Write code (python or another object-oriented language) for data analyzing and modeling algorithms. A day in the life The Senior Data Scientist will have the opportunity to use one of the world's largest eCommerce and advertising data sets to influence the evolution of our products. This role requires an individual with excellent business, communication, and technical skills, enabling collaboration with various functions, including product managers, software engineers, economists and data scientists, as well as senior leadership. This role will create and enhance performance monitoring reports to find insights that product and business team should focus on. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail, and with an ability to work in a fast-paced, high-energy and ever-changing environment. The drive and capability to shape the direction is a must. This role will influence the direction of the business by leveraging our data to deliver insights that drive decisions and actions. The role will involve translating broad business problems into specific analytics projects, conducting deep quantitative analyses, and communicating results effectively. The role will help the organization identify, evaluate, and evangelize new techniques and tools to continue to improve our ability to deliver value to Amazon’s customers. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to customers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire an Applied Scientist to work on the embedded software for our control system. The position is on-site at our lab, located on the Caltech campus in Pasadena, CA. The ideal candidate will be able to translate high-level requirements (e.g. latency, bandwidth, architecture) into software/firmware implementations (e.g. low-level device drivers, kernel modules, Python APIs) compatible with our FPGA-based control systems. This requires someone who (1) has a strong desire to work within a team of scientists and engineers, and (2) demonstrates ownership in initiating and driving projects to completion. Key job responsibilities - Develop embedded software in C, C++ or Rust for high-performance real-time tasks. - Develop Linux and/or real-time operating system (RTOS) features required to operate control system. - Develop FPGA gateware that drives domain-specific functions of our control hardware. - Develop user-space API that exposes low-level features, preferably in Python. - Develop, test, and optimize control system features on bench-top and in real-world conditions. - Own the stability of control system software and firmware. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem-solving and excellent communication skills. Working effectively within a team environment is essential. You will have the opportunity to work on new ideas and stay abreast of the field of experimental quantum computation. A day in the life The lifetime of your projects will likely begin with a lot of discussion and negotiation with our scientists and engineers to translate their software and hardware feature requests into design proposals that demonstrate sensible trade-offs between complexity and delivery. Once a design proposal has been accepted, you will implement it in a logical and maintainable manner. You will also be encouraged to take ownership over the stability and quality of the software and hardware stack by identifying, proposing, and implementing features that will accelerate our realization of quantum computing technologies. You will be joining the Control & Calibration Software team within the AWS Center of Quantum Computing. Our team is comprised of scientists and engineers who are building scalable software that enables quantum computing technologies. About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Pasadena, CA, USA
ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, WA, Seattle
Alexa is the Amazon cloud service that powers Echo, the groundbreaking Amazon device designed around your voice. We believe voice is the most natural user interface for interacting with technology across many domains; we are inventing the future. Alexa Audio is responsible for fulfilling customers requests for all types of audio content (Music, Radio, Podcasts, Books, custom sounds) across all Alexa enabled devices. This covers a broad set of experiences including search, browse, recommendations, playback, and devices grouping and controls. We are seeking a talented, self-directed Applied Scientists who would come up with state of the art semantic search and recommendation techniques that work with both voice and visual interfaces. This is a unique opportunity where you will be working on latest technologies including LLMs, and also see it impact customer's lives in meaningful ways. Responsibilities - Apply advance state-of-the-art artificial intelligence techniques and develop algorithms in areas of personalization, voice based dialogue systems and natural language information retrieval. - Design scientifically sound online experiments and offline simulations to study and improve products. - Work closely with talented engineers to create scalable models and put them to production. - Perform statistical analyses on large data sets, identify problems, and propose solutions. - Work with partner science teams to identify collaboration opportunities. Work hard. Have fun. Make history. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
GB, London
Amazon Advertising is looking for an Applied Scientist to join its initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies.The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like Contextual data processing and classification, traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety and experimentation. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Applied Scientist to work on machine learning and data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you excited by the prospect of analyzing terabytes of data and leveraging state-of-the-art data science and machine learning techniques to solve real world problems? Do you like to own business problems/metrics of high ambiguity where yo get to define the path forward for success of a new initiative? As an applied scientist, you will invent ML based solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment. * Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
US, WA, Bellevue
The Planning and Execution team (PLEX) is seeking a Research Scientist to build & improve mathematical optimization techniques and algorithms to support planning and execution activities throughout North America. PLEX is comprised of high-powered dynamic teams, which are shaping network execution through the development and application of innovative labor & flow planning mechanisms. Our goal is to improve and enhance the Amazon Fulfillment network to ultimately drive the best customer experience in a reliable and cost-efficient manner that is truly world-class. As part of the PLEX organization, you’ll partner closely with other scientists, engineers, and product teams in a collegial environment to build optimization strategies that will influence the performance of all North America Amazon Fulfillment networks. You will develop scientific models and perform complex mathematical research to accurately solve labor and flow planning problems, enhance automation, and provide value-added research to the business. You will continually iterate and identify new modeling and research opportunities to implement science into customer fulfillment planning processes. We are looking for a passionate scientist with a commitment to innovation & teamwork. Successful candidates will have a deep knowledge of optimization techniques and ML methods to tackle complex science problems. You will have the communication skills necessary to impact and influence leadership & partner teams through technical writings, presentations and discussions. You will learn a lot, grow, and have fun in the process! Innovation Opportunities & Career Growth Our business grows fast and we want our employees growing with it too. We provide constant opportunities for growth in our team through regular training, talent development, mentoring, and mechanisms conducive to incubating ideas from the bottom up to showcase your innovations. Inclusive Team Culture Here at Amazon, we promote an inclusive and engaging environment. We understand the strength that unique experiences bring to the team and value it. In our team, we uphold that all individuals should feel included, respected, and developed. Flexibility It's not the hours that you put into work matters, rather it's the quality of work that you put in. We provide flexibility and support to help you find a balance between your work and personal lives. This position will be based in Austin, TX We are open to hiring candidates to work out of one of the following locations: - Austin, TX - Bellevue, WA - Nashville, TN Key job responsibilities - Create & improve mathematical optimization techniques & ML models for labor & flow planning - Lead & partner with research, applied, and data science teams to improve accuracy of existing technology solutions and provide data driven recommendations for strategic model implementations - Identify and thoroughly research external and previously non-considered factors to implement with advanced mathematics - Simplify the scientific decisions by navigating through the technology complexities, explaining them in plain customer and business context to our partners & customers. We are open to hiring candidates to work out of one of the following locations: Austin, TX, USA | Bellevue, WA, USA | Nashville, TN, USA
US, WA, Seattle
We are building GenAI based shopping assistant for Amazon. We reimage Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs to develop groundbreaking generative AI technologies in Amazon Q. Q is an interactive, AI-powered assistant that touches all aspects of builder and developer experience. You will be part of the Q Code Analysis team that works at the intersection of code analysis, logical reasoning and machine learning to build and enhance capabilities, safety and security of AI-powered developer tools in Amazon Q. You will invent, implement, and deploy state-of-the-art algorithms and systems, and be at the heart of a growing and exciting focus area for AWS. Your work will directly impact millions of our customers in the form of products and services that are based on large language models, retrieval-augmented generation, code analysis, responsible AI, and a lot more. You will make breakthroughs that challenge the limits of code analysis, machine learning and AI while collaborating with academics and interacting directly with customers to bring new research rapidly to production. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. EEO/Accommodations AWS is committed to a diverse and inclusive workplace to deliver the best results for our customers. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status; we celebrate the diverse ways we work. For individuals with disabilities who would like to request an accommodation, please let us know and we will connect you to our accommodation team. You may also reach them directly by visiting please https://www.amazon.jobs/en/disability/us. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our [insert req country location here] Amazon offices. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
DE, Berlin
The Amazon Artificial General Intelligence (AGI) team is looking for a passionate, highly skilled and inventive Senior Applied Scientist with strong machine learning background to lead the development and implementation of state-of-the-art ML systems for building large-scale, high-quality conversational assistant systems. Key job responsibilities - Use deep learning, ML and NLP techniques to create scalable solutions for creation and development of language model centric solutions for building personalized assistant systems based on a rich set of structured and unstructured contextual signals - Innovate new methods for contextual knowledge extraction and information representation, using language models in combination with other learning techniques, that allows effective grounding in context providers when considering memory, cpu, latency and quality - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in personal knowledge aggregation, processing and verification - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think Big about the arc of development of conversational assistant system personalization over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team A day in the life As a Senior Applied Scientist, you will play a critical role in driving the development of personalization techniques enabling conversational systems, in particular those based on large language models, to be tailored to customer needs. You will handle Amazon-scale use cases with significant impact on our customers' experiences. We are open to hiring candidates to work out of one of the following locations: Berlin, DEU