Amazon’s papers at SLT

Quantization with self-adjustable centroids, contrastive predictive coding for transfer learning, teacher ensembles for differential privacy, and more — Amazon’s speech research features a battery of cutting-edge machine learning techniques.

A quick guide to Amazon’s innovative work at the IEEE Spoken Language Technology Workshop (SLT), which begins next week:

Accelerator-aware training for transducer-based speech recognition
Suhaila Shakiah, Rupak Vignesh Swaminathan, Hieu Duy Nguyen, Raviteja Chinta, Tariq Afzal, Nathan Susanj, Athanasios Mouchtaris, Grant Strimel, Ariya Rastrow

Machine learning models trained at full precision can suffer performance falloffs when deployed on neural-network accelerator (NNA) chips, which leverage highly parallelized fixed-point arithmetic to improve efficiency. To avoid this problem, Amazon researchers propose a method for emulating NNA operations at training time.

Related content
Combination of distillation and distillation-aware quantization compresses BART model to 1/16th its size.

An analysis of the effects of decoding algorithms on fairness in open-ended language generation
Jwala Dhamala, Varun Kumar, Rahul Gupta, Kai-Wei Chang, Aram Galstyan

The researchers systematically study the effects of different decoding algorithms on the fairness of large language models, showing that fairness varies significantly with changes in decoding algorithms’ hyperparameters. They also provide recommendations for reporting decoding details during fairness evaluations and optimizing decoding algorithms.

An experimental study on private aggregation of teacher ensemble learning for end-to-end speech recognition
Chao-Han Huck Yang, I-Fan Chen, Andreas Stolcke, Sabato Marco Siniscalchi, Chin-Hui Lee

For machine learning models, meeting differential-privacy (DP) constraints usually means adding noise to data, which can hurt performance. Amazon researchers apply private aggregation of teacher ensembles (PATE), which uses different noisy models to train a single student model, to automatic speech recognition, reducing word error rate by 26% to 28% while meeting DP constraints.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

Exploration of language-specific self-attention parameters for multilingual end-to-end speech recognition
Brady Houston, Katrin Kirchhoff

Multilingual, end-to-end, automatic-speech-recognition models perform better when they’re trained using both language-specific and language-universal model parameters. Amazon researchers show that using language-specific parameters in the attention mechanisms of Conformer-based encoders can improve the performance of ASR models across six languages by up to 12% relative to multilingual baselines and 36% relative to monolingual baselines.

Guided contrastive self-supervised pre-training for automatic speech recognition
Aparna Khare, Minhua Wu, Saurabhchand Bhati, Jasha Droppo, Roland Maas

Contrastive predictive coding (CPC) is a representation-learning method that maximizes the mutual information between a model’s intermediate representations and its output. Amazon researchers present a modification of CPC that maximizes the mutual information between representations from a prior-knowledge model and the output of a model being pretrained, reducing the word error rate relative to CPC pretraining only.

Guided CPC.png
The conventional contrastive-predictive-coding (CPC) representation-learning approach (left) and Amazon researchers' proposed guided CPC method (right, in red), which maximizes the mutual information between representations from a prior-knowledge model and the output of a model being pretrained. From "Guided contrastive self-supervised pre-training for automatic speech recognition".

Implicit acoustic echo cancellation for keyword spotting and device-directed speech detection
Samuele Cornell, Thomas Balestri, Thibaud Sénéchal

In realistic human-machine interactions, customer speech can overlap with device playback. Amazon researchers propose a way to improve keyword spotting and device-directed-speech detection in these circumstances. They teach the model to ignore playback audio via an implicit acoustic echo cancellation mechanism. They show that, by conditioning on the reference signal as well as the signal captured at the microphone, they can improve recall by as much as 56%.

Mixture of domain experts for language understanding: An analysis of modularity, task performance, and memory tradeoffs
Benjamin Kleiner, Jack FitzGerald, Haidar Khan, Gokhan Tur

Amazon researchers show that natural-language-understanding models that incorporate mixture-of-experts networks, in which each network layer corresponds to a different domain, are easier to update after deployment, with less effect on performance, than other types of models.

N-best hypotheses reranking for text-to-SQL systems
Lu Zeng, Sree Hari Krishnan Parthasarathi, Dilek Hakkani-Tür

Text-to-SQL models map natural-language requests to structured database queries, and today’s state-of-the-art systems rely on fine-tuning pretrained language models. Amazon researchers improve the coherence of such systems with a model that generates a query plan predicting whether a SQL query contains particular clauses; they improve the correctness of such systems with an algorithm that generates schemata that can be used to match prefixes and abbreviations for slot values (such as “left” and “L”).

Related content
At re:Invent, AWS announces that the CodeWhisperer preview has added support for two new programming languages.

On granularity of prosodic representations in expressive text-to-speech
Mikolaj Babianski, Kamil Pokora, Raahil Shah, Rafal Sienkiewicz, Daniel Korzekwa, Viacheslav Klimkov

In expressive-speech synthesis, the same input text can be mapped to different acoustic realizations. Prosodic embeddings at the utterance, word, or phoneme level can be used at training time to simplify that mapping. Amazon researchers study these approaches, showing that utterance-level embeddings have insufficient capacity and phoneme-level embeddings tend to introduce instabilities, while word-level representations strike a balance between capacity and predictability. The researchers use that finding to close the gap in naturalness between synthetic speech and recordings by 90%.

Personalization of CTC speech recognition models
Saket Dingliwal, Monica Sunkara, Srikanth Ronanki, Jeff Farris, Katrin Kirchhoff, Sravan Bodapati

Connectionist temporal classification (CTC) loss functions are an attractive option for automatic speech recognition because they yield simple models with low inference latency. But CTC models are hard to personalize because of their conditional-independence assumption. Amazon researchers propose a battery of techniques to bias a CTC model’s encoder and its beam search decoder, yielding a 60% improvement in F1 score on domain-specific rare words over a strong CTC baseline.

Related content
Accounting for data heterogeneity across edge devices enables more useful model updates, both locally and globally.

Remap, warp and attend: Non-parallel many-to-many accent conversion with normalizing flows
Abdelhamid Ezzerg, Tom Merritt, Kayoko Yanagisawa, Piotr Bilinski, Magdalena Proszewska, Kamil Pokora, Renard Korzeniowski, Roberto Barra-Chicote, Daniel Korzekwa

Regional accents affect not only how words are pronounced but prosodic aspects of speech such as speaking rate and intonation. Amazon researchers investigate an approach to accent conversion that uses normalizing flows. The approach has three steps: remapping the phonetic conditioning, to better match the target accent; warping the duration of the converted speech, to better suit the target phonemes; and applying an attention mechanism to implicitly align source and target speech sequences.

Residual adapters for targeted updates in RNN-transducer based speech recognition system
Sungjun Han, Deepak Baby, Valentin Mendelev

While it is possible to incrementally fine-tune an RNN-transducer (RNN-T) automatic-speech-recognition model to recognize multiple sets of new words, this creates a dependency between the updates, which is not ideal when we want each update to be applied independently. Amazon researchers propose training residual adapters on the RNN-T model and combining them on the fly through adapter fusion, enabling a recall on new words of more than 90%, with less than 1% relative word error rate degradation.

Residual adapters.png
An RNN-transducer model with n independently trained adapters combined through different adapter-fusion methods. From "Residual adapters for targeted updates in RNN-transducer based speech recognition system".

Sub-8-bit quantization for on-device speech recognition: a regularization-free approach
Kai Zhen, Martin Radfar, Hieu Nguyen, Grant Strimel, Nathan Susanj, Athanasios Mouchtaris

For on-device automatic speech recognition (ASR), quantization-aware training (QAT) can help manage the trade-off between performance and efficiency. Among existing QAT methods, one major drawback is that the quantization centroids have to be predetermined and fixed. Amazon researchers introduce a compression mechanism with self-adjustable centroids that results in a simpler yet more versatile quantization scheme that enables a 30.73% memory footprint savings and a 31.75% user-perceived latency reduction, compared to eight-bit QAT.

Research areas

Related content

US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and under-served communities around the world. We are looking for an accomplished Applied Scientist who will deliver science applications such as anomaly detection, advanced calibration methods, space engineering simulations, and performance analytics -- to name a few. Key job responsibilities • Translate ambiguous problems into well defined mathematical problems • Prototype, test, and implement state-of-the-art algorithms for antenna pointing calibration, anomaly detection, predictive failure models, and ground terminal performance evaluation • Provide actionable recommendations for system design/definition by defining, running, and summarizing physically-accurate simulations of ground terminal functionality • Collaborate closely with engineers to deploy performant, scalable, and maintainable applications in the cloud Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life In this role as an Applied Scientist, you will design, implement, optimize, and operate systems critical to the uptime and performance of Kuiper ground terminals. Your contributions will have a direct impact on customers around the world. About the team This role will be part of the Ground Software & Analytics team, part of Ground Systems Engineering. Our team is responsible for: • Design, development, deployment, and support of a Tier-1 Monitoring and Remediation System (MARS) needed to maintain high availability of hundreds of ground terminals deployed around the world • Ground systems integration/test (I&T) automation • Ground terminal configuration, provisioning, and acceptance automation • Systems analysis • Algorithm development (pointing/tracking/calibration/monitoring) • Software interface definition for supplier-provided hardware and development of software test automation