Amazon’s papers at SLT

Quantization with self-adjustable centroids, contrastive predictive coding for transfer learning, teacher ensembles for differential privacy, and more — Amazon’s speech research features a battery of cutting-edge machine learning techniques.

A quick guide to Amazon’s innovative work at the IEEE Spoken Language Technology Workshop (SLT), which begins next week:

Accelerator-aware training for transducer-based speech recognition
Suhaila Shakiah, Rupak Vignesh Swaminathan, Hieu Duy Nguyen, Raviteja Chinta, Tariq Afzal, Nathan Susanj, Athanasios Mouchtaris, Grant Strimel, Ariya Rastrow

Machine learning models trained at full precision can suffer performance falloffs when deployed on neural-network accelerator (NNA) chips, which leverage highly parallelized fixed-point arithmetic to improve efficiency. To avoid this problem, Amazon researchers propose a method for emulating NNA operations at training time.

Related content
Combination of distillation and distillation-aware quantization compresses BART model to 1/16th its size.

An analysis of the effects of decoding algorithms on fairness in open-ended language generation
Jwala Dhamala, Varun Kumar, Rahul Gupta, Kai-Wei Chang, Aram Galstyan

The researchers systematically study the effects of different decoding algorithms on the fairness of large language models, showing that fairness varies significantly with changes in decoding algorithms’ hyperparameters. They also provide recommendations for reporting decoding details during fairness evaluations and optimizing decoding algorithms.

An experimental study on private aggregation of teacher ensemble learning for end-to-end speech recognition
Chao-Han Huck Yang, I-Fan Chen, Andreas Stolcke, Sabato Marco Siniscalchi, Chin-Hui Lee

For machine learning models, meeting differential-privacy (DP) constraints usually means adding noise to data, which can hurt performance. Amazon researchers apply private aggregation of teacher ensembles (PATE), which uses different noisy models to train a single student model, to automatic speech recognition, reducing word error rate by 26% to 28% while meeting DP constraints.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

Exploration of language-specific self-attention parameters for multilingual end-to-end speech recognition
Brady Houston, Katrin Kirchhoff

Multilingual, end-to-end, automatic-speech-recognition models perform better when they’re trained using both language-specific and language-universal model parameters. Amazon researchers show that using language-specific parameters in the attention mechanisms of Conformer-based encoders can improve the performance of ASR models across six languages by up to 12% relative to multilingual baselines and 36% relative to monolingual baselines.

Guided contrastive self-supervised pre-training for automatic speech recognition
Aparna Khare, Minhua Wu, Saurabhchand Bhati, Jasha Droppo, Roland Maas

Contrastive predictive coding (CPC) is a representation-learning method that maximizes the mutual information between a model’s intermediate representations and its output. Amazon researchers present a modification of CPC that maximizes the mutual information between representations from a prior-knowledge model and the output of a model being pretrained, reducing the word error rate relative to CPC pretraining only.

Guided CPC.png
The conventional contrastive-predictive-coding (CPC) representation-learning approach (left) and Amazon researchers' proposed guided CPC method (right, in red), which maximizes the mutual information between representations from a prior-knowledge model and the output of a model being pretrained. From "Guided contrastive self-supervised pre-training for automatic speech recognition".

Implicit acoustic echo cancellation for keyword spotting and device-directed speech detection
Samuele Cornell, Thomas Balestri, Thibaud Sénéchal

In realistic human-machine interactions, customer speech can overlap with device playback. Amazon researchers propose a way to improve keyword spotting and device-directed-speech detection in these circumstances. They teach the model to ignore playback audio via an implicit acoustic echo cancellation mechanism. They show that, by conditioning on the reference signal as well as the signal captured at the microphone, they can improve recall by as much as 56%.

Mixture of domain experts for language understanding: An analysis of modularity, task performance, and memory tradeoffs
Benjamin Kleiner, Jack FitzGerald, Haidar Khan, Gokhan Tur

Amazon researchers show that natural-language-understanding models that incorporate mixture-of-experts networks, in which each network layer corresponds to a different domain, are easier to update after deployment, with less effect on performance, than other types of models.

N-best hypotheses reranking for text-to-SQL systems
Lu Zeng, Sree Hari Krishnan Parthasarathi, Dilek Hakkani-Tür

Text-to-SQL models map natural-language requests to structured database queries, and today’s state-of-the-art systems rely on fine-tuning pretrained language models. Amazon researchers improve the coherence of such systems with a model that generates a query plan predicting whether a SQL query contains particular clauses; they improve the correctness of such systems with an algorithm that generates schemata that can be used to match prefixes and abbreviations for slot values (such as “left” and “L”).

Related content
At re:Invent, AWS announces that the CodeWhisperer preview has added support for two new programming languages.

On granularity of prosodic representations in expressive text-to-speech
Mikolaj Babianski, Kamil Pokora, Raahil Shah, Rafal Sienkiewicz, Daniel Korzekwa, Viacheslav Klimkov

In expressive-speech synthesis, the same input text can be mapped to different acoustic realizations. Prosodic embeddings at the utterance, word, or phoneme level can be used at training time to simplify that mapping. Amazon researchers study these approaches, showing that utterance-level embeddings have insufficient capacity and phoneme-level embeddings tend to introduce instabilities, while word-level representations strike a balance between capacity and predictability. The researchers use that finding to close the gap in naturalness between synthetic speech and recordings by 90%.

Personalization of CTC speech recognition models
Saket Dingliwal, Monica Sunkara, Srikanth Ronanki, Jeff Farris, Katrin Kirchhoff, Sravan Bodapati

Connectionist temporal classification (CTC) loss functions are an attractive option for automatic speech recognition because they yield simple models with low inference latency. But CTC models are hard to personalize because of their conditional-independence assumption. Amazon researchers propose a battery of techniques to bias a CTC model’s encoder and its beam search decoder, yielding a 60% improvement in F1 score on domain-specific rare words over a strong CTC baseline.

Related content
Accounting for data heterogeneity across edge devices enables more useful model updates, both locally and globally.

Remap, warp and attend: Non-parallel many-to-many accent conversion with normalizing flows
Abdelhamid Ezzerg, Tom Merritt, Kayoko Yanagisawa, Piotr Bilinski, Magdalena Proszewska, Kamil Pokora, Renard Korzeniowski, Roberto Barra-Chicote, Daniel Korzekwa

Regional accents affect not only how words are pronounced but prosodic aspects of speech such as speaking rate and intonation. Amazon researchers investigate an approach to accent conversion that uses normalizing flows. The approach has three steps: remapping the phonetic conditioning, to better match the target accent; warping the duration of the converted speech, to better suit the target phonemes; and applying an attention mechanism to implicitly align source and target speech sequences.

Residual adapters for targeted updates in RNN-transducer based speech recognition system
Sungjun Han, Deepak Baby, Valentin Mendelev

While it is possible to incrementally fine-tune an RNN-transducer (RNN-T) automatic-speech-recognition model to recognize multiple sets of new words, this creates a dependency between the updates, which is not ideal when we want each update to be applied independently. Amazon researchers propose training residual adapters on the RNN-T model and combining them on the fly through adapter fusion, enabling a recall on new words of more than 90%, with less than 1% relative word error rate degradation.

Residual adapters.png
An RNN-transducer model with n independently trained adapters combined through different adapter-fusion methods. From "Residual adapters for targeted updates in RNN-transducer based speech recognition system".

Sub-8-bit quantization for on-device speech recognition: a regularization-free approach
Kai Zhen, Martin Radfar, Hieu Nguyen, Grant Strimel, Nathan Susanj, Athanasios Mouchtaris

For on-device automatic speech recognition (ASR), quantization-aware training (QAT) can help manage the trade-off between performance and efficiency. Among existing QAT methods, one major drawback is that the quantization centroids have to be predetermined and fixed. Amazon researchers introduce a compression mechanism with self-adjustable centroids that results in a simpler yet more versatile quantization scheme that enables a 30.73% memory footprint savings and a 31.75% user-perceived latency reduction, compared to eight-bit QAT.

Research areas

Related content

IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Device organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful science leader in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have solid technical background and extensive experience in leading projects and technical teams. The ideal candidate would also have experiences in developing natural language processing systems (particularly LLM based systems) for industry applications, enjoy operating in highly dynamic and ambiguous environments, be self-motivated to take on challenging problems to deliver customer impact. In this role, you will lead a team of scientists to fine tune and evaluate the LLM to improve instruction following capabilities, align human preferences with RLHF, enhance conversation responses with RAG techniques, and various other. You will use your management, research and production experience to develop the team, communicate direction and achieve the results in a fast-paced environment. You will have significant influence on our overall LLM strategy by helping define product features, drive the system architecture, and spearhead the best practices that enable a quality product. Key job responsibilities Key job responsibilities Build a strong and coherent team with particular focus on sciences and innovations in LLM technologies for conversation AI applications Own the strategic planning and project management for technical initiatives in your team with the help of technical leads. Provide technical and scientific guidance to your team members. Collaborate effectively with multiple cross-organizational teams. Communicate effectively with senior management as well as with colleagues from science, engineering and business backgrounds. Support the career development of your team members.