Amazon’s papers at SLT

Quantization with self-adjustable centroids, contrastive predictive coding for transfer learning, teacher ensembles for differential privacy, and more — Amazon’s speech research features a battery of cutting-edge machine learning techniques.

A quick guide to Amazon’s innovative work at the IEEE Spoken Language Technology Workshop (SLT), which begins next week:

Accelerator-aware training for transducer-based speech recognition
Suhaila Shakiah, Rupak Vignesh Swaminathan, Hieu Duy Nguyen, Raviteja Chinta, Tariq Afzal, Nathan Susanj, Athanasios Mouchtaris, Grant Strimel, Ariya Rastrow

Machine learning models trained at full precision can suffer performance falloffs when deployed on neural-network accelerator (NNA) chips, which leverage highly parallelized fixed-point arithmetic to improve efficiency. To avoid this problem, Amazon researchers propose a method for emulating NNA operations at training time.

Related content
Combination of distillation and distillation-aware quantization compresses BART model to 1/16th its size.

An analysis of the effects of decoding algorithms on fairness in open-ended language generation
Jwala Dhamala, Varun Kumar, Rahul Gupta, Kai-Wei Chang, Aram Galstyan

The researchers systematically study the effects of different decoding algorithms on the fairness of large language models, showing that fairness varies significantly with changes in decoding algorithms’ hyperparameters. They also provide recommendations for reporting decoding details during fairness evaluations and optimizing decoding algorithms.

An experimental study on private aggregation of teacher ensemble learning for end-to-end speech recognition
Chao-Han Huck Yang, I-Fan Chen, Andreas Stolcke, Sabato Marco Siniscalchi, Chin-Hui Lee

For machine learning models, meeting differential-privacy (DP) constraints usually means adding noise to data, which can hurt performance. Amazon researchers apply private aggregation of teacher ensembles (PATE), which uses different noisy models to train a single student model, to automatic speech recognition, reducing word error rate by 26% to 28% while meeting DP constraints.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

Exploration of language-specific self-attention parameters for multilingual end-to-end speech recognition
Brady Houston, Katrin Kirchhoff

Multilingual, end-to-end, automatic-speech-recognition models perform better when they’re trained using both language-specific and language-universal model parameters. Amazon researchers show that using language-specific parameters in the attention mechanisms of Conformer-based encoders can improve the performance of ASR models across six languages by up to 12% relative to multilingual baselines and 36% relative to monolingual baselines.

Guided contrastive self-supervised pre-training for automatic speech recognition
Aparna Khare, Minhua Wu, Saurabhchand Bhati, Jasha Droppo, Roland Maas

Contrastive predictive coding (CPC) is a representation-learning method that maximizes the mutual information between a model’s intermediate representations and its output. Amazon researchers present a modification of CPC that maximizes the mutual information between representations from a prior-knowledge model and the output of a model being pretrained, reducing the word error rate relative to CPC pretraining only.

Guided CPC.png
The conventional contrastive-predictive-coding (CPC) representation-learning approach (left) and Amazon researchers' proposed guided CPC method (right, in red), which maximizes the mutual information between representations from a prior-knowledge model and the output of a model being pretrained. From "Guided contrastive self-supervised pre-training for automatic speech recognition".

Implicit acoustic echo cancellation for keyword spotting and device-directed speech detection
Samuele Cornell, Thomas Balestri, Thibaud Sénéchal

In realistic human-machine interactions, customer speech can overlap with device playback. Amazon researchers propose a way to improve keyword spotting and device-directed-speech detection in these circumstances. They teach the model to ignore playback audio via an implicit acoustic echo cancellation mechanism. They show that, by conditioning on the reference signal as well as the signal captured at the microphone, they can improve recall by as much as 56%.

Mixture of domain experts for language understanding: An analysis of modularity, task performance, and memory tradeoffs
Benjamin Kleiner, Jack FitzGerald, Haidar Khan, Gokhan Tur

Amazon researchers show that natural-language-understanding models that incorporate mixture-of-experts networks, in which each network layer corresponds to a different domain, are easier to update after deployment, with less effect on performance, than other types of models.

N-best hypotheses reranking for text-to-SQL systems
Lu Zeng, Sree Hari Krishnan Parthasarathi, Dilek Hakkani-Tür

Text-to-SQL models map natural-language requests to structured database queries, and today’s state-of-the-art systems rely on fine-tuning pretrained language models. Amazon researchers improve the coherence of such systems with a model that generates a query plan predicting whether a SQL query contains particular clauses; they improve the correctness of such systems with an algorithm that generates schemata that can be used to match prefixes and abbreviations for slot values (such as “left” and “L”).

Related content
At re:Invent, AWS announces that the CodeWhisperer preview has added support for two new programming languages.

On granularity of prosodic representations in expressive text-to-speech
Mikolaj Babianski, Kamil Pokora, Raahil Shah, Rafal Sienkiewicz, Daniel Korzekwa, Viacheslav Klimkov

In expressive-speech synthesis, the same input text can be mapped to different acoustic realizations. Prosodic embeddings at the utterance, word, or phoneme level can be used at training time to simplify that mapping. Amazon researchers study these approaches, showing that utterance-level embeddings have insufficient capacity and phoneme-level embeddings tend to introduce instabilities, while word-level representations strike a balance between capacity and predictability. The researchers use that finding to close the gap in naturalness between synthetic speech and recordings by 90%.

Personalization of CTC speech recognition models
Saket Dingliwal, Monica Sunkara, Srikanth Ronanki, Jeff Farris, Katrin Kirchhoff, Sravan Bodapati

Connectionist temporal classification (CTC) loss functions are an attractive option for automatic speech recognition because they yield simple models with low inference latency. But CTC models are hard to personalize because of their conditional-independence assumption. Amazon researchers propose a battery of techniques to bias a CTC model’s encoder and its beam search decoder, yielding a 60% improvement in F1 score on domain-specific rare words over a strong CTC baseline.

Related content
Accounting for data heterogeneity across edge devices enables more useful model updates, both locally and globally.

Remap, warp and attend: Non-parallel many-to-many accent conversion with normalizing flows
Abdelhamid Ezzerg, Tom Merritt, Kayoko Yanagisawa, Piotr Bilinski, Magdalena Proszewska, Kamil Pokora, Renard Korzeniowski, Roberto Barra-Chicote, Daniel Korzekwa

Regional accents affect not only how words are pronounced but prosodic aspects of speech such as speaking rate and intonation. Amazon researchers investigate an approach to accent conversion that uses normalizing flows. The approach has three steps: remapping the phonetic conditioning, to better match the target accent; warping the duration of the converted speech, to better suit the target phonemes; and applying an attention mechanism to implicitly align source and target speech sequences.

Residual adapters for targeted updates in RNN-transducer based speech recognition system
Sungjun Han, Deepak Baby, Valentin Mendelev

While it is possible to incrementally fine-tune an RNN-transducer (RNN-T) automatic-speech-recognition model to recognize multiple sets of new words, this creates a dependency between the updates, which is not ideal when we want each update to be applied independently. Amazon researchers propose training residual adapters on the RNN-T model and combining them on the fly through adapter fusion, enabling a recall on new words of more than 90%, with less than 1% relative word error rate degradation.

Residual adapters.png
An RNN-transducer model with n independently trained adapters combined through different adapter-fusion methods. From "Residual adapters for targeted updates in RNN-transducer based speech recognition system".

Sub-8-bit quantization for on-device speech recognition: a regularization-free approach
Kai Zhen, Martin Radfar, Hieu Nguyen, Grant Strimel, Nathan Susanj, Athanasios Mouchtaris

For on-device automatic speech recognition (ASR), quantization-aware training (QAT) can help manage the trade-off between performance and efficiency. Among existing QAT methods, one major drawback is that the quantization centroids have to be predetermined and fixed. Amazon researchers introduce a compression mechanism with self-adjustable centroids that results in a simpler yet more versatile quantization scheme that enables a 30.73% memory footprint savings and a 31.75% user-perceived latency reduction, compared to eight-bit QAT.

Research areas

Related content

US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bangalore
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As a highly experienced and seasoned science leader, you will apply state of the art natural language processing and computer vision research to video centric digital media, while also responsible for creating and maintaining the best environment for applied science in order to recruit, retain and develop top talent. You will lead the research direction for a team of deeply talented applied scientists, creating the roadmaps for forward-looking research and communicate them effectively to senior leadership. You will also hire and develop applied scientists - growing the team to meet the evolving needs of our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment