Amazon Physical Science Fellowship winners announced

Award recognizes three individuals who have shown the skills necessary to bridge the gap between fundamental scientific results in the physical sciences and the development of impactful technologies.

The Amazon Physical Science Fellowship was developed to foster collaboration between Amazon and the physics community for the purpose of accelerating the time from fundamental discovery to real-world application. More than 2,000 physics professors from around the world were invited to identify game-changing discoveries from the past two decades that could lead to products and services that will positively impact future generations.

These three selected fellows demonstrated an ability to identify scientific results from across the physical sciences with the potential to provide broad, positive impacts to society.

The winners are listed below.

Xiwen Gong

Xiwen Gong, PhD, is an assistant professor of chemical engineering at the University of Michigan, where she focuses on developing the next generation of soft electronic materials and devices by utilizing a transdisciplinary approach that unites physics, chemistry, and engineering.

Xiwen Gong
Xiwen Gong

Before joining the University of Michigan, Gong — who is also by courtesy an assistant professor of electrical and computer engineering, materials science and engineering, macromolecular science and engineering, and applied physics — worked as a post-doctoral fellow with Zhenan Bao, the K. K. Lee Professor of Chemical Engineering, at Stanford University’s Department of Chemical Engineering. At Stanford, Gong focused on developing soft and stretchable semiconductors and devices for wearable electronics (inSPIREd Talk). In 2018, Gong earned her PhD in electrical and computer engineering with Edward Sargent, University Professor of electrical and computer engineering, at the University of Toronto. During her PhD studies, Gong focused on the design of novel materials for solar energy harvesting, light emitting, and sensing. Her work has been published in Nature, Nature Materials, Nature Photonics, and other leading science publications. Gong received the Extraordinary Potential Prize and the “Rising Stars in EECS 2017” (Stanford University). In 2018, she was selected as one of the fourteen inaugural Schmidt Science Fellows.

Eric Ma

Eric Y. Ma PhD, is an assistant professor in physics and electrical engineering and computer science and the Georgia Lee Chair in Physics at the University of California, Berkeley. His research focuses on electromagnetic-matter interaction in uncommon regimes.

Eric Ma
Eric Ma

On the one hand, he develops new instruments that use microwave and light to probe the fundamental properties of quantum materials. On the other hand, he creates new devices and structures that use unconventional materials and inverse design to generate, manipulate, and detect electromagnetic fields. His research interests are expansive, though he is particularly excited about beyond-von–Neumann computing and human-computer interface.

Before joining UC Berkeley, Ma earned his PhD in applied physics at Stanford University, where he also conducted postdoc studies in applied physics and electrical engineering. He was also briefly a senior scientist at Apple. Ma is passionate about advancing access to undergraduate research and broadening collaborations between physics and engineering.

Tomas Martin

Tomas Martin, PhD, is senior lecturer in materials physics within the School of Physics at the University of Bristol, and director of the university’s Master of Science in Nuclear Science and Engineering program.

Tomas Martin
Tomas Martin

After earning a PhD at Bristol investigating the electronic properties of diamond surfaces, Martin worked in the renewable energy industry as a bank’s engineer on wind and solar power projects around the world, followed by four years as David Cockayne Junior Research Fellow in Materials at the University of Oxford. Martin is editor-in-chief of the scientific journal Materials Today Communications and is a published science fiction author.'

Martin’s research uses advanced microstructural characterization techniques to understand the structure and chemistry of materials for nuclear power plants, semiconductor devices and aerospace. His work aims to take a holistic approach to materials characterization using a combination of experimental techniques and computer modeling to understand the mechanisms behind materials behavior across the length scales, from individual atomic defects to large-scale stresses and chemistry changes in engineering components.

Martin is part of the core academic team running the University of Bristol’s Interface Analysis Centre microscope facility. His research group uses techniques including atom probe tomography, focused ion beam and electron microscopy, complemented by computational modeling, to understand materials degradation challenges such as corrosion, creep and radiation damage. He works with collaborators in many fields of academic research, as well as with industrial partners including EDF Energy, NNL, Rolls Royce and UKAEA.

Below are the Review Board of the Amazon Physical Science Fellowship, a distinguished group from academia and industry.

Review Board members

Philip Kim.jpg
Philip Kim

Philip Kim - Professor Philip Kim received his B.S in physics at Seoul National University in 1990 and received his Ph.D. in Applied Physics from Harvard University in 1999. He was Miller Postdoctoral Fellow in Physics from University of California, Berkeley during 1999-2001. He then joined the Department of Physics at Columbia University as a faculty member from 2002-2014. In 2014, he moved to Harvard University, where he is Professor of Physics and Professor of Applied Physics.

The focus of Prof. Kim’s group research is the mesoscopic investigation of transport phenomena, particularly, electric, thermal and thermoelectrical properties of low dimensional nanoscale materials. These materials include carbon nanotubes, organic and inorganic nanowires, 2-dimensional mesoscopic single crystals, and single organic molecules.

Professor Kim also received numerous honors and award including Tomassoni-Chisesi Prizes (2018); Vannevar Bush Faculty Fellowship (2018); Oliver E. Buckley Prize, American Physical Society (2014); Dresden Barkhausen Award (2012); IBM Faculty Award (2009); and Ho-Am Science Prize (2008). He is Elected member of the American Academy of Arts and Science (2020) and American Physical Society Fellow (2007). He graduated 21 PhD students and trained 32 postdoctoral fellows.

Young-Kee Kim - Young-Kee Kim is the Louis Block Distinguished Service Professor of Physics and Senior Advisor to the Provost for Global Scientific Initiatives at the University of Chicago. She is an experimental particle physicist, and devotes much of her research to understanding the origin of mass for fundamental particles.

Young-Kee Kim copy.jpg
Young-Kee Kim

Between 2004 and 2006, she co-led the CDF experiment at Fermilab and was Deputy Director of Fermilab between 2006 and 2013. She is currently working on the ATLAS particle physics experiment at the Large Hadron Collider at CERN as well as on accelerator physics research. Prior to Chicago, Young-Kee Kim was Professor of Physics at University of California, Berkeley. She was born in South Korea, and earned her BS and MS in Physics from Korea University, in 1984 and 1986, respectively, and her Ph.D. in Physics from the University of Rochester in 1990.

She conducted her postdoctoral research at Lawrence Berkeley National Laboratory. Young-Kee is a Fellow of the National Academy of Sciences, the American Academy of Arts and Sciences, the American Physical Society, the American Association for the Advancement of Science, and the Sloan Foundation. She received the Ho-Am Prize, the Women in Science Leadership Award from the Chicago Council of Science and Technology, the University of Rochester’s Distinguished Scholar Medal, and Korea University’s Alumni Award.

Hideo Mabuchi image.jpg
Hideo Mabuchi

Hideo Mabuchi - Hideo Mabuchi received an AB in Physics from Princeton and a PhD in Physics from Caltech. He served as Chair of the Department of Applied Physics at Stanford from 2010-2016.

His early scientific research was focused on understanding open quantum systems, quantum measurement, and the quantum-to-classical transition. In recent years his research group has turned towards fundamental issues of quantum engineering, such as quantum nonlinear dynamics, quantum feedback control and quantum model reduction. Along the way his group has also worked substantially on single-molecule biophysics, quantum information science, and quantum materials.

Major awards include the inaugural Mohammed Dahleh Distinguished Lectureship (UCSB) and a Fellowship from the John D. and Catherine T. MacArthur Foundation.

Matt McIlwain - Managing Director, Madrona Venture Group - Madrona is a venture capital firm based in Seattle, investing in mainly seed and Series A technology-based companies. For over two decades, the firm has been helping technology entrepreneurs launch and grow world-class companies

Matt McIlwain.jpg
Matt McIlwain

At Madrona, Matt invests in a broad range of software and data driven companies with a focus on cloud computing, dataware, intelligent applications and the intersections of innovation (where life science and data science intersect).

He believes in the Learning Loop for entrepreneurs who journey from curiosity to triangulation and decision making. This leads to positive outcomes and ongoing learnings. Matt has been named several times to the Forbes Midas List and list of Top 100 Venture Capitalists by CB Insights and The New York Times.

He was named Emerging Company Director of the year by the Puget Sound Business Journal. In 2011, he received the Washington Policy Center’s Champion of Freedom Award. Matt is a board member (and previous chair) of Fred Hutchinson Cancer Research Center and a board member of Washington Policy Center.

Matt enjoys going on adventures with his family, discussing public policy issues and trying out new technologies. Matt is a graduate of Dartmouth College and holds an MBA from Harvard Business School and a Master’s in Public Policy from Harvard’s Kennedy School of Government.

José Onuchic - José Onuchic is the Harry C & Olga K Wiess Professor of Physics and Astronomy, Chemistry and Biosciences at Rice University and the co-Director of the NSF-sponsored Center for Theoretical Biological Physics. His research looks at theoretical methods for molecular biophysics and gene networks.

Jose Onuchic.jpg
José Onuchic

He introduced the concept of protein folding funnels. Energy landscape theory and the funnel concept provide the framework needed to pose and to address the questions of protein folding and function mechanisms. He developed the tunneling pathways concept for electron transfer in proteins. He is also interested in stochastic effects in genetic networks with applications to bacteria decision-making and cancer. Further expanding his ideas coming from energy landscapes for protein folding, his group is now exploring chromatin folding and function and therefore modeling the 3D structure of the genome. He has received much recognition for his achievements. He was elected to the National Academy of Sciences in 2006.

He received the ICTP Prize in honor of Heisenberg in Trieste, Italy (1989) and the Beckman Young Investigator Award (1992). He is a fellow of the American Physical Society (1995), the American Academy of Arts and Sciences (2009), the Brazilian Academy of Sciences (2009), the Biophysical Society (2012) and the American Association for the Advancement of Science (2017). He received the Einstein Professorship by the Chinese Academy of Sciences (2011).

In 2014 he received the Diaspora Prize from the Ministry of Foreign Affairs and the Ministry of Industrial Development and Foreign Trade from Brazil. In 2015 he received The International Union of Biochemistry and Molecular Biology Medal. In 2018 he received National Order of Scientific Merit by the Brazilian National Council in Science and Technology. He received the 2019 American Physical Society’s Max Delbruck Prize in Biological Physics and was elected to Pontifical Academy of Sciences in 2020.

Babak Parviz - Vice President | Amazon — Babak is a Vice President at Amazon, and has led the launch of products/services such as Amazon Care, Amazon Comprehend Medical, Echo Frames, and Amazon Explore.

BabakParviz.jpg
Babak Parviz

Prior to joining Amazon in 2014, Babak was with Google as a Distinguished Engineer and Director at Google [x] where he built Google Glass and founded the robotic surgery and the active contact lens programs.

Babak received his BA in Literature (University of Washington), BS in Electronics (Sharif University of Technology), MS in Physics and MS and PhD in Electrical Engineering (University of Michigan), and completed his postdoctoral fellowship in Chemistry and Chemical Biology at Harvard University. He has received numerous recognitions including NSF Career Award, MIT Technology Review 35, University of Michigan Bicentennial Alumni Award, Time magazine’s best invention of the year, and IEEE CAS Industrial Pioneer Award.

Simone Severini - Simone Severini is a Professor of Physics of Information at University College London and is the Director of Quantum Computing at AWS.

Simone Severini.jpg
Simone Severini

As Director, Simone contributed to grow the initiatives of AWS in Quantum Technologies, including the Amazon Braket service and the AWS Center for Quantum Computing in partnership with Caltech.

During his academic career, Simone served as a grant reviewer for EPSRC (UK), NSF (US), NSFC (China), European Commission, Research Council of Norway, National Science Center (Poland), Dutch Research Council, Israel Science Foundation, MITACS (Canada), NSERC (Computer Science Evaluation Group), The Royal Society (International Exchanges Committee).

Our inspiration

Building on the formulation of Maxwell’s equations in 1865, Heinrich Hertz demonstrated in 1888 that radio waves can be generated, transmitted, and detected in a laboratory setting. Though Hertz doubted this discovery would lead to any practical application, it provided the game-changing experimental results that inspired Guglielmo Marconi to develop a viable radio system, transmitting the first signals across the Atlantic Ocean in 1902.

It took fourteen years from an important experimental observation by Hertz until the radio became widespread. Now, we are interested in identifying key scientific findings since the year 2000 and working with big thinkers who can help foster their development into engineered products and services at a much faster pace. We aim to identify the modern-day equivalents of the Hertz experiment.

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
Do you want to create intelligent, adaptable robots with global impact? We are seeking an experienced Applied Science Manager to lead a team of talented applied scientists and software engineers developing and deploying advanced manipulation strategies and algorithms. You will drive innovation that enables manipulation in high-contact, high-density, and diverse conditions with the speed and reliability that will delight our customers. Collaborating with cross-functional teams across hardware, software, and science, you will deliver reliable and high-performing solutions that will scale across geographies, applications, and conditions. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a disruptor, prolific innovator, and a reputed problem solver—someone who truly enables robotics to significantly impact the lives of millions of consumers. A day in the life - Prioritize being a great people manager: motivating, rewarding, and coaching your diverse team is the most important part of this role. You will recruit and retain top talent and excel in people and performance management tasks. - Set a vision for the team and create the technical roadmap that deliver results for customers while thinking big for future applications. - Guide the research, design, deployment, and evaluation of complex motion planning and control algorithms for contact-rich, cluttered, real-world manipulation problems. - Work closely with perception, hardware, and software teams to create integrated robotic solutions that are better than the sum of their parts. - Implement best practices in applied research and software development, managing project timelines, resources, and deliverables effectively. Amazon offers a full range of benefits for you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, WA, Seattle
Amazon Economics is seeking Structural Economist (STRUC) Interns who are passionate about applying structural econometric methods to solve real-world business challenges. STRUC economists specialize in the econometric analysis of models that involve the estimation of fundamental preferences and strategic effects. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to model strategic decision-making and inform business optimization, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As a STRUC Economist Intern, you'll specialize in structural econometric analysis to estimate fundamental preferences and strategic effects in complex business environments. Your responsibilities include: - Analyze large-scale datasets using structural econometric techniques to solve complex business challenges - Applying discrete choice models and methods, including logistic regression family models (such as BLP, nested logit) and models with alternative distributional assumptions - Utilizing advanced structural methods including dynamic models of customer or firm decisions over time, applied game theory (entry and exit of firms), auction models, and labor market models - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including pricing analysis, competition modeling, strategic behavior estimation, contract design, and marketing strategy optimization - Helping business partners formalize and estimate business objectives to drive optimal decision-making and customer value - Build and refine comprehensive datasets for in-depth structural economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Reduced Form Causal Analysis (RFCA) Economist Interns who are passionate about applying econometric methods to solve real-world business challenges. RFCA represents the largest group of economists at Amazon, and these core econometric methods are fundamental to economic analysis across the company. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to analyze causal relationships and inform strategic business decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an RFCA Economist Intern, you'll specialize in econometric analysis to determine causal relationships in complex business environments. Your responsibilities include: - Analyze large-scale datasets using advanced econometric techniques to solve complex business challenges - Applying econometric techniques such as regression analysis, binary variable models, cross-section and panel data analysis, instrumental variables, and treatment effects estimation - Utilizing advanced methods including differences-in-differences, propensity score matching, synthetic controls, and experimental design - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including program evaluation, elasticity estimation, customer behavior analysis, and predictive modeling that accounts for seasonality and time trends - Build and refine comprehensive datasets for in-depth economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Forecasting, Macroeconomics and Finance (FMF) Economist Interns who are passionate about applying time-series econometric methods to solve real-world business challenges. FMF economists interpret and forecast Amazon business dynamics by combining advanced time-series statistical methods with strong economic analysis and intuition. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to forecast business trends and inform strategic decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an FMF Economist Intern, you'll specialize in time-series econometric analysis to understand, predict, and optimize Amazon's business dynamics. Your responsibilities include: - Analyze large-scale datasets using advanced time-series econometric techniques to solve complex business challenges - Applying frontier methods in time series econometrics, including forecasting models, dynamic systems analysis, and econometric models that combine macro and micro data - Developing formal models to understand past and present business dynamics, predict future trends, and identify relevant risks and opportunities - Building datasets and performing data analysis at scale using world-class data tools - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including analyzing drivers of growth and profitability, forecasting business metrics, understanding how customer experience interacts with external conditions, and evaluating short, medium, and long-term business dynamics - Build and refine comprehensive datasets for in-depth time-series economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
CA, BC, Vancouver
The Alexa Daily Essentials team delivers experiences critical to how customers interact with Alexa as part of daily life. Alexa users engage with our products across experiences connected to Timers, Alarms, Calendars, Food, and News. Our experiences include critical time saving techniques, ad-supported news audio and video, and in-depth kitchen guidance aimed at serving the needs of the family from sunset to sundown. As a Data Scientist on our team, you'll work with complex data, develop statistical methodologies, and provide critical product insights that shape how we build and optimize our solutions. You will work closely with your Analytics and Applied Science teammates. You will build frameworks and mechanisms to scale data solutions across our organization. If you are passionate about redefining how AI can improves everyone's daily life, we’d love to hear from you. Key job responsibilities Problem-Solving - Analyze complex data (including healthcare data, experimental data, and large-scale datasets) to identify patterns, inform product decisions, and understand root causes of anomalies. - Develop analysis and modeling approaches to drive product and engineering actions to identify patterns, insights, and understand root causes of anomalies. Your solutions directly improve the customer experience. - Independently work with product partners to identify problems and opportunities. Apply a range of data science techniques and tools to solve these problems. Use data driven insights to inform product development. Work with cross-disciplinary teams to mechanize your solution into scalable and automated frameworks. Data Infrastructure - Build data pipelines, and identify novel data sources to leverage in analytical work - both from within Alexa and from cross Amazon - Acquire data by building the necessary SQL / ETL queries Communication - Excel at communicating complex ideas to technical and non-technical audiences. - Build relationships with stakeholders and counterparts. Work with stakeholders to translate causal insights into actionable recommendations - Force multiply the work of the team with data visualizations, presentations, and/or dashboards to drive awareness and adoption of data assets and product insights - Collaborate with cross-functional teams. Mentor teammates to foster a culture of continuous learning and development
US, WA, Seattle
The Automated Reasoning Group in the AWS Neuron Compiler team is looking for an Applied Scientist to work on the intersection of Artificial Intelligence and program analysis to raise the code quality bar in our state-of-the-art deep learning compiler stack. This stack is designed to optimize application models across diverse domains, including Large Language and Vision, originating from leading frameworks such as PyTorch, TensorFlow, and JAX. Your role will involve working closely with our custom-built Machine Learning accelerators, Inferentia and Trainium, which represent the forefront of AWS innovation for advanced ML capabilities, and is the underpinning of Generative AI. In this role as an Applied Scientist, you'll be instrumental in designing, developing, and deploying analyzers for ML compiler stages and compiler IRs. You will architect and implement business-critical tooling, publish cutting-edge research, and mentor a brilliant team of experienced scientists and engineers. You will need to be technically capable, credible, and curious in your own right as a trusted AWS Neuron engineer, innovating on behalf of our customers. Your responsibilities will involve tackling crucial challenges alongside a talented engineering team, contributing to leading-edge design and research in compiler technology and deep-learning systems software. Strong experience in programming languages, compilers, program analyzers, and program synthesis engines will be a benefit in this role. A background in machine learning and AI accelerators is preferred but not required. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.