SimBot Challenge FAQs

Frequently asked questions about the challenge.
General
What is the Alexa Prize?
Alexa is Amazon’s cloud-based voice service available on over 100 million devices from Amazon and third-party device manufacturers. With Alexa, you can build natural voice experiences that offer customers a more intuitive way to interact with the technology they use every day. Our collection of tools, APIs, reference solutions, and documentation makes it easy for anyone to build with Alexa.
Why did Amazon create the Alexa Prize?
The Alexa Prize, an annual university competition dedicated to accelerating the field of conversational artificial intelligence (AI), was created to recognize students from around the globe who are changing the way we interact with technology. The goal is to advance several areas of conversational AI including natural language understanding (NLU), context modeling, dialog management, commonsense reasoning, natural language generation (NLG), and knowledge acquisition.
How does the Alexa Prize support research?
The Alexa Prize is a research testbed for university students to experiment with and advance conversational AI at scale.

Research teams own the intellectual property (IP) in their systems and are encouraged to publish scientific articles on their work. As described in the Official Rules, participating teams grant Amazon a non-exclusive license to any technology or software they develop in connection with the competition.
What new datasets will I have access to as part of the Alexa Prize?
The TEACh dataset as well as a training dataset proprietary to the live interaction portion of the SimBot Challenge will be available to competitors in each phase.
SimBot
What is the SimBot Challenge?
SimBot, a competition focused on helping advance development of next-generation virtual assistants that will assist humans in completing real-world tasks by continuously learning, and gaining the ability to perform commonsense reasoning.

The SimBot Challenge will have two phases: A public benchmark phase, and a live interactions phase. Participants in both phases will build machine-learning models for natural language understanding, human-robot interaction, and robotic task completion. Artificial intelligence challenges addressed in the competition relate to reasoning on language and scene understanding, learning from demonstration, self-learning, and task completion utilizing natural language.

Unlike previous Alexa Prize competitions, the public benchmark challenge phase will be open to university teams, as well as individuals in academia and industry interested in advancing the science of AI and engaging top researchers from around the globe. The SimBot Challenge public benchmark phase is like existing visual language navigation competitions.
What is the difference between the Public Benchmark Challenge and the Live Interaction Challenge?
The Public Benchmark Challenge is open to any individual or team, academic or industry, who wants to complete and submit a model for evaluation and rating during the evaluation period. It is based on the TEACh dataset offered to the research community in October, 2021. The Live Interaction Period’s participation is limited solely to the university-based teams selected for the SimBot Challenge in November 2021 and June, 2022. These teams will each receive Amazon sponsorship to build a SimBot that will compete in a challenge from July, 2022 to September 2022 where they will receive real time ratings and feedback from Alexa Users.
Why is the SimBot - Live Interaction Challenge only limited to university teams?
The SimBot Challenge - live interaction phase is part of the Alexa Prize which is currently limited to universities and university students in Amazon initiatives to advance AI. However, the Public Benchmarking Challenge is open to both academic and university-based teams.
What will my SimBot do?
SimBot will navigate in a virtual environment to complete challenges guided by Alexa users. SimBot will interact with objects in the environment including but not limited to those common to offices and homes. There will be obstacles and hazards introduced to make game play fun and challenging.
How will I build my SimBot?
SimBots will use images from the game and instructions from Alexa users to navigate in a virtual world. Teams will build AI models which recognize objects and scenes as well as understand natural language commands from users. We plan to provide baseline data and a baseline model as a reference but we expect teams to develop new and novel approaches as well as augment the provided data to improve performance.
Eligibility: Public Benchmark Challenge
Phase 1, SimBot challenge
Who is eligible to participate in the public benchmark challenge?
Any individual or team, academic or industry-based.
How do I sign up to participate in the public benchmark challenge?
A registration form will open on November 15, 2021 at alexaprize.com.
Is funding available to university teams competing in the public benchmark challenge?
No, funding is only available to university teams selected to participate in the SimBot Challenge. In addition to the teams selected in 2021 up to four new, high-performing teams from the public benchmark challenge will be invited to apply for the SimBot challenge, live interaction phase for which funding is available. Learn more here.
Who can apply to participate?
Any individual or team can register and participate in the public benchmark phase with exception of parties from Cuba, Iran, North Korea, Sudan, Syria, and the region of Crimea.

Registration for the public benchmark challenge will open November 15, 2021. The challenge will begin on January 10, 2022.
Do I need to be a certain age?
Participants must be at or above the age of majority in the country, state, province or jurisdiction of residence at the time of registration.
Can I enroll if a family member is an Amazon employee?
Immediate family members and household members of Amazon employees, directors and contractors are not eligible to participate.
Eligibility: SimBot Challenge
Includes sponsored teams for both Public Benchmark and Live Interaction phases
Who can apply to participate?
The Alexa Prize is open to full-time students enrolled in an accredited university, with the exception of universities in Cuba, Iran, North Korea, Sudan, Syria, and the region of Crimea (see Official Rules). Proof of enrollment will be required to participate.
Can I participate if I don’t attend a university?
No. The Alexa Prize is open only to full-time enrolled university students.
Do I need to be enrolled in a university program throughout the duration of the competition?
All participating team members must remain full-time students in good standing at their university while participating in the competition.
Do I need to be a certain age?
Participants must be at or above the age of majority in the country, state, province or jurisdiction of residence at the time of entry.
Can I enroll if a family member is an Amazon employee?
Immediate family members and household members of Amazon employees, directors and contractors are not eligible to participate. See Official Rules for additional restrictions.
If my team fails to apply for the SimBot Challenge now, will there be any future opportunities to compete in the Live Interaction challenge?
Yes, the initial application period run from October 4-31, 2021. In addition to the teams selected in 2021 up to four new, high-performing university teams from the public benchmark challenge will be invited to apply for the SimBot challenge, live interaction phase for which funding is available. Learn more here.
Will university teams selected post-Public Benchmark Challenge be eligible for funding and for what amount?
Teams selected for the SimBot Challenge in June, 2022 will be eligible for funding.
If my team was not selected during the first application period are we eligible to re-apply in may if we qualify?
Yes. University-based teams that participate in the public benchmark phase are eligible to re-apply for the SimBot challenge between May 9 - 23, 2022. Four new, high-performing university teams from the public benchmark challenge will be invited to apply for the SimBot challenge, live interaction phase for which funding is available. Learn more here.
My team is not completely comprised of university students but we perform well in the public benchmark challenge? Is there an opportunity for us to continue in the competition?
Yes, we plan to continue the public benchmark competition through the end of 2022.
My company does collaborative work with several universities, are we eligible to compete in the live interaction challenge alongside them?
No, only full-time students are eligible to participate in the SimBot challenge, which includes the live interaction period.
My university and another frequently collaborate on projects - is there any exception to the students all enrolled in one university rule?
Applications are limited to students all from the same, single, university.
Teams
How many teams will be selected to participate?
All applications will be reviewed and evaluated by a panel of Amazon experts. Up to ten teams will be selected and sponsored by Amazon. All teams selected in November, 2021 will receive a $250,000 grant while those selected in June, 2022 will receive a $200,000 grant intended to support two full-time students, a month of faculty time, free Alexa devices, and free AWS hosting including access to CPU and GPU based machines, SQL and NoSQL databases, and object storage. See the Official Rules for details.
How many team members can our team have?
There are no minimum or maximum team member requirements. All team members must be enrolled in their university throughout the duration of the competition. All teams will receive a $250,000 grant if selected in November 2021 or a $200,000 grant if selected in June, 2022 regardless of how many members are on the team. We recommend a team with 4-6 students with diverse fields of study or areas of expertise.
Can students from different universities be on the same team?
Teams must be comprised of students attending the same university.
Can one university have more than one team?
Yes, universities may have more than one team.
Can I participate on two separate teams?
You can only be a part of one team for the duration of the competition.
Can undergraduate and graduate students work together?
Yes, teams may be comprised of undergraduate and graduate students.
Do I need a faculty advisor?
All teams must nominate a faculty advisor and include the faculty advisor’s consent in the applications.
What is the role of the faculty advisor?
Faculty advisors will advise students on technical directions and be a sounding board for new ideas, similar to a graduate school advisor. They will also act as the official representative from the university for this competition.
Can we add or remove team members during the competition?
During the competition, faculty advisors may request to remove or add members to the team, subject to approval by Amazon.
Can we discuss our SimBot with faculty or students who aren’t on our team?
Only team members may work on their SimBot. However, the faculty advisor and other students and faculty members at your university may provide support and advice to your team and may co-author technical publications and research papers.
Application process
How do we apply?
Check the SimBot page for the latest update on applications.
What do we need to apply?
Once you have selected your team members, team leader, and faculty sponsor, you are ready to begin the application process.
Do all team members have to apply?
Each team must have a team lead, who should apply on behalf of the whole team. Your application must include all of your team members’ information.
Is there an application fee?
There is no application fee.
How will teams be selected to participate?
All applications will be reviewed by a panel of Amazon employees. Teams will be selected based on the following criteria: (1) the potential scientific contribution to the field; (2) the technical merit of the approach; (3) the novelty of the idea; and (4) an assessment of the team’s ability to execute against their plan. Please be sure to provide enough detail in your application to enable our experts to evaluate your proposal.
Competition details
What is the goal of the challenge?
To develop AI models which advance the state of the art and allow users to naturally interact with a robotic assistant in a virtual world to successfully complete a range of challenges.
How will winners be selected?
Winners will be determined based on the final standings at the completion of the finals period.
Can we use other funding to help us participate in this challenge?
Yes, you may use other funding to support your team, subject to the terms described in the Official Rules. External funding will need to be disclosed by January 1, 2023.
Will Alexa customers be able to engage with our SimBot?
Your team will be required to submit its SimBot for certification and publication by the Amazon Alexa team. After certification, you will enter the Internal Amazon Beta Period, where Amazon employees will test your SimBot and provide feedback. After the Internal Amazon Beta Period, we will allow Amazon Alexa customers to try your SimBot and provide feedback to you. Amazon may impose Availability Criteria, or requirements the SimBot must meet before it will be made available to Alexa users. Availability Criteria may include criteria such as a minimum average customer rating, uptime requirements, and an ability to consistently filter offensive content.
Amazon launched the Echo in the UK, Germany, India, Japan, and other countries. Will localized languages be supported?
Your team must build its SimBot using U.S. English. Your SimBot will be available to Alexa customers in the U.S. Customers in other countries may also access it by setting their Amazon PFM (Preferred Marketplace) to U.S.
Will we publish our research from the Alexa Prize?
Yes. Publishing research papers as an outcome of your work on the Alexa Prize is required for all teams participating in the competition, although teams should not publish Amazon confidential information, as described in the Official Rules. The Alexa Prize requires all teams to submit a technical paper for the Alexa Prize proceedings. Your SimBot will not be selected for the finals if your team does not submit a technical paper for Alexa Prize proceedings. Papers will be published at the end of the competition in an online Proceedings of the Alexa Prize, which will be publicly available.

Teams may also publish research papers in third-party publications and conferences, as long as all papers are provided to Amazon for review at least two weeks before the submission deadlines and no research papers are published before the Alexa Prize proceedings are published without Amazon’s prior approval.
Who will own the intellectual property rights in my submission?
You will retain ownership over your SimBot. Amazon will have a non-exclusive license to any technology or software you develop in connection with the competition. See the Official Rules for details.
Prizes
What are the prizes for winning the competition?
A prize of $500,000 will be awarded to the team that creates the best SimBot. The second-place and third-place finalist teams will receive a $100,000 and a $50,000 prize, respectively. See the contest rules for details.
Do we get a stipend and devices to participate in the Alexa Prize?
Up to ten teams will be sponsored to participate in the Alexa Prize in November, 2021. These teams’ universities will receive a $250,000 research grant to fund the team members’ work over the year. Additional teams selected to participate in the SimBot Live Interaction challenge in June, 2022 will receive a $200,000 research grant to fund the team members’ work over the year.

The sponsorship includes one Alexa-enabled device per team member for up to a total of three devices per team and one Alexa-enabled device per faculty advisor, free AWS services to support the development of their SimBot, and support from the Alexa team.
How can the grant be spent?
The grants will be awarded with the intention that they will support two full-time students for the duration of the Competition and one month of the Faculty Advisor’s salary. No more than 35% of the research grants may be allocated to administrative fees. If your team would like to use the funds in another manner, your faculty advisor must receive approval from Amazon before doing so.
What happens if we are selected and receive a stipend but can no longer participate?
Stipends will be awarded in installments payable to the university. If your team withdraws before any of the installments, remaining funds will not be transferred to the university.
How will the prizes be distributed among a team?
The first, second, and third place prizes will be distributed equally among all registered team members. The official list of registered team members must be confirmed by January 30, 2023.
Timeline
What are the key milestones of the competition?
Teams must submit their applications between October 1, 2021 and October 31, 2021. Between November 1 and November 10, 2021, we will announce teams selected to participate. In the summer of 2022 following the public benchmark phase and the second application period teams will be invited to an Alexa Prize Bootcamp at Amazon where they will receive training on the resources made available to all competing teams. The finals will be scheduled between January 30 and March 27, 2023 and will determine the winning teams in the first annual SimBot Challenge.
If selected, when will we receive the stipend, devices, access to the Alexa Prize SimBot toolkit, our AWS account, and be introduced to our point of contact?
We will reach out to all teams no later than November 10, 2021 with instructions on next steps. Up to ten teams will be selected to receive a $250,000 stipend, Alexa-enabled devices, free AWS services to support their development efforts, and support from the Alexa team.
More information
See the full competition rules or submit your questions. Need assistance? Email: alexaprizesupport@amazon.com

Latest news

The latest updates, stories, and more about Alexa Prize.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist in the Fabrication group. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of device fabrication techniques. Candidates with a track record of original scientific contributions will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities In this role, you will drive improvements in qubit performance by characterizing the impact of environmental and material noise on qubit dynamics. This will require designing experiments to assess the role of specific noise sources, ensuring the collection of statistically significant data through automation, analyzing the results, and preparing clear summaries for the team. Finally, you will work with hardware engineers, material scientists, and circuit designers to implement changes which mitigate the impact of the most significant noise sources. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, VA, Herndon
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. AWS Infrastructure Services Science (AISS) researches and builds machine learning models that influence the power utilization at our data centers to ensure the health of our thermal and electrical infrastructure at high infrastructure utilization. As a Data Scientist, you will work on our Science team and partner closely with other scientists and data engineers as well as Business Intelligence, Technical Program Management, and Software teams to accurately model and optimize our power infrastructure. Outputs from your models will directly influence our data center topology and will drive exceptional cost savings. You will be responsible for building data science prototypes that optimize our power and thermal infrastructure, working across AWS to solve data mapping and quality issues (e.g. predicting when we might have bad sensor readings), and contribute to our Science team vision. You are skeptical. When someone gives you a data source, you pepper them with questions about sampling biases, accuracy, and coverage. When you’re told a model can make assumptions, you actively try to break those assumptions. You have passion for excellence. The wrong choice of data could cost the business dearly. You maintain rigorous standards and take ownership of the outcome of your data pipelines and code. You do whatever it takes to add value. You don’t care whether you’re building complex ML models, writing blazing fast code, integrating multiple disparate data-sets, or creating baseline models - you care passionately about stakeholders and know that as a curator of data insight you can unlock massive cost savings and preserve customer availability. You have a limitless curiosity. You constantly ask questions about the technologies and approaches we are taking and are constantly learning about industry best practices you can bring to our team. You have excellent business and communication skills to be able to work with product owners to understand key business questions and earn the trust of senior leaders. You will need to learn Data Center architecture and components of electrical engineering to build your models. You are comfortable juggling competing priorities and handling ambiguity. You thrive in an agile and fast-paced environment on highly visible projects and initiatives. The tradeoffs of cost savings and customer availability are constantly up for debate among senior leadership - you will help drive this conversation. Key job responsibilities - Proactively seek to identify opportunities and insights through analysis and provide solutions to automate and optimize power utilization based on a broad and deep knowledge of AWS data center systems and infrastructure. - Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult customer or business problems and cases in which the solution approach is unclear. - Collaborate with Engineering teams to obtain useful data by accessing data sources and building the necessary SQL/ETL queries or scripts. - Build models and automated tools using statistical modeling, econometric modeling, network modeling, machine learning algorithms and neural networks. - Validate these models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. - Collaborate with Engineering teams to implement these models in a manner which complies with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. About the team Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Why AWS* Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Diverse Experiences* Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. *Work/Life Balance* We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. *Inclusive Team Culture* Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) conferences, inspire us to never stop embracing our uniqueness. *Mentorship and Career Growth* We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Research Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the intersection of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team seeks an experienced Principal Data Scientist to join our ProServe Shared Delivery Team (SDT). In this role, you will serve as a technical leader and strategic advisor to AWS enterprise customers, partners, and internal AWS teams on transformative AI/ML projects. You will leverage your deep technical expertise to architect and implement innovative machine learning and generative AI solutions that drive significant business outcomes. As a Principal Data Scientist, you will lead complex, high-impact AI/ML initiatives across multiple customer engagements. You will collaborate with Director and C-level executives to translate business challenges into technical solutions. You will drive innovation through thought leadership, establish technical standards, and develop reusable solution frameworks that accelerate customer adoption of AWS AI/ML services. Your work will directly influence the strategic direction of AWS Professional Services AI/ML offerings and delivery approaches. Your extensive experience in designing and implementing sophisticated AI/ML solutions will enable you to tackle the most challenging customer problems. You will provide technical mentorship to other data scientists, establish best practices, and represent AWS as a subject matter expert in customer-facing engagements. You will build trusted advisor relationships with customers and partners, helping them achieve their business outcomes through innovative applications of AWS AI/ML services. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities Architecting and implementing complex, enterprise-scale AI/ML solutions that solve critical customer business challenges Providing technical leadership across multiple customer engagements, establishing best practices and driving innovation Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to design and deploy AI/ML solutions Developing reusable solution frameworks, reference architectures, and technical assets that accelerate customer adoption of AWS AI/ML services Representing AWS as a subject matter expert in customer-facing engagements, including executive briefings and technical workshops Identifying and driving new business opportunities through technical innovation and thought leadership Mentoring junior data scientists and contributing to the growth of AI/ML capabilities within AWS Professional Services
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues
US, VA, Herndon
This position requires that the candidate selected be a US Citizen and must currently possess and maintain an active TS/SCI security clearance with polygraph. The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Data Scientist to join our team at Amazon Web Services (AWS). Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? In this role, you'll work directly with customers to design, evangelize, implement, and scale AI/ML solutions that meet their technical requirements and business objectives. You'll be a key player in driving customer success through their AI transformation journey, providing deep expertise in data science, machine learning, generative AI, and best practices throughout the project lifecycle. As a Data Scientist within the AWS Professional Services organization, you will be proficient in architecting complex, scalable, and secure machine learning solutions tailored to meet the specific needs of each customer. You'll help customers imagine and scope the use cases that will create the greatest value for their businesses, develop statistical models and analytical frameworks, select and train the right models, and define paths to navigate technical or business challenges. Working closely with stakeholders, you'll assess current data infrastructure, perform exploratory data analysis, develop proof-of-concepts, and propose effective strategies for implementing AI and generative AI solutions at scale. You will design and run experiments, research new algorithms, extract insights from complex datasets, and find new ways of optimizing risk, profitability, and customer experience. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides assistance through a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities - Designing and implementing complex, scalable, and secure AI/ML solutions on AWS tailored to customer needs, including developing statistical models, performing feature engineering, and selecting appropriate algorithms for specific use cases - Developing and deploying machine learning models and generative AI applications that solve real-world business problems, conducting experiments, performing rigorous statistical analysis, and optimizing for performance at scale - Collaborating with customer stakeholders to identify high-value AI/ML use cases, gather requirements, analyze data quality and availability, and propose effective strategies for implementing machine learning and generative AI solutions - Providing technical guidance on applying AI, machine learning, and generative AI responsibly and cost-efficiently, performing model validation and interpretation, troubleshooting throughout project delivery, and ensuring adherence to best practices - Acting as a trusted advisor to customers on the latest advancements in AI/ML, emerging technologies, statistical methodologies, and innovative approaches to leveraging diverse data sources for maximum business impact - Sharing knowledge within the organization through mentoring, training, creating reusable AI/ML artifacts and analytical frameworks, and working with team members to prototype new technologies and evaluate technical feasibility
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Join a sizeable team of data scientists, research scientists, and machine learning engineers that develop computer vision models on overhead imagery for a high-impact government customer. We own the entire machine learning development life cycle, developing models on customer data: Exploring the data and brainstorming and prioritizing ideas for model development Implementing new features in our sizable code base Training models in support of experimental or performance goals T&E-ing, packaging, and delivering models We perform this work on both unclassified and classified networks, with portions of our team working on each network. We seek a new team member to work on the classified networks. Three to four days a week, you would travel to the customer site in Northern Virginia to perform tasking as described below. Weekdays when you do not travel to the customer site, you would work from your local Amazon office. You would work collaboratively with teammates to use and contribute to a well-maintained code base that the team has developed over the last several years, almost entirely in python. You would have great opportunities to learn from team members and technical leads, while also having opportunities for ownership of important project workflows. You would work with Jupyter Notebooks, the Linux command line, Apache AirFlow, GitLab, and Visual Studio Code. We are a very collaborative team, and regularly teach and learn from each other, so, if you are familiar with some of these technologies, but unfamiliar with others, we encourage you to apply - especially if you are someone who likes to learn. We are always learning on the job ourselves. Key job responsibilities With support from technical leads, carry out tasking across the entire machine learning development lifecycle to develop computer vision models on overhead imagery: - Run data conversion pipelines to transform customer data into the structure needed by models for training - Perform EDA on the customer data - Train deep neural network models on overhead imagery - Develop and implement hyper-parameter optimization strategies - Test and Evaluate models and analyze results - Package and deliver models to the customer - Incorporate model R&D from low-side researchers - Implement new features to the model development code base - Collaborate with the rest of the team on long term strategy and short-medium term implementation. - Contribute to presentations to the customer regarding the team’s work.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Selling Partner Trust & Store Integrity Science Team. We are looking for a talented scientist who is passionate to build advanced machine learning systems that help manage the safety of millions of transactions every day and scale up our operation with automation. Key job responsibilities Innovate with the latest GenAI/LLM/VLM technology to build highly automated solutions for efficient risk evaluation and automated operations Design, develop and deploy end-to-end machine learning solutions in the Amazon production environment to create impactful business value Learn, explore and experiment with the latest machine learning advancements to create the best customer experience A day in the life You will be working within a dynamic, diverse, and supportive group of scientists who share your passion for innovation and excellence. You'll be working closely with business partners and engineering teams to create end-to-end scalable machine learning solutions that address real-world problems. You will build scalable, efficient, and automated processes for large-scale data analyses, model development, model validation, and model implementation. You will also be providing clear and compelling reports for your solutions and contributing to the ongoing innovation and knowledge-sharing that are central to the team's success.
US, WA, Seattle
Are you passionate about applying machine learning and advanced statistical techniques to protect one of the world's largest online marketplaces? Do you want to be at the forefront of developing innovative solutions that safeguard Amazon's customers and legitimate sellers while ensuring a fair and trusted shopping experience? Do you thrive in a collaborative environment where diverse perspectives drive breakthrough solutions? If yes, we invite you to join the Amazon Risk Intelligence Science Team. We're seeking an exceptional scientist who can revolutionize how we protect our marketplace through intelligent automation. As a key member of our team, you'll develop and deploy state-of-the-art machine learning systems that analyze millions of seller interactions daily, ensuring the integrity and trustworthiness of Amazon's marketplace while scaling our operations to new heights. Your work will directly impact the safety and security of the shopping experience for hundreds of millions of customers worldwide, while supporting the growth of honest entrepreneurs and businesses. Key job responsibilities • Use machine learning and statistical techniques to create scalable abuse detection solutions that identify fraudulent seller behavior, account takeovers, and marketplace manipulation schemes • Innovate with the latest GenAI technology to build highly automated solutions for efficient seller verification, transaction monitoring, and risk assessment • Design, develop and deploy end-to-end machine learning solutions in the Amazon production environment to prevent and detect sophisticated abuse patterns across the marketplace • Learn, explore and experiment with the latest machine learning advancements to protect customer trust and maintain marketplace integrity while supporting legitimate selling partners • Collaborate with cross-functional teams to develop comprehensive risk models that can adapt to evolving abuse patterns and emerging threats About the team You'll be working closely with business partners and engineering teams to create end-to-end scalable machine learning solutions that address real-world problems. You will build scalable, efficient, and automated processes for large-scale data analyses, model development, model validation, and model implementation. You will also be providing clear and compelling reports for your solutions and contributing to the ongoing innovation and knowledge-sharing that are central to the team's success.