SimBot Challenge FAQs

Frequently asked questions about the challenge.
General
What is the Alexa Prize?
Alexa is Amazon’s cloud-based voice service available on over 100 million devices from Amazon and third-party device manufacturers. With Alexa, you can build natural voice experiences that offer customers a more intuitive way to interact with the technology they use every day. Our collection of tools, APIs, reference solutions, and documentation makes it easy for anyone to build with Alexa.
Why did Amazon create the Alexa Prize?
The Alexa Prize, an annual university competition dedicated to accelerating the field of conversational artificial intelligence (AI), was created to recognize students from around the globe who are changing the way we interact with technology. The goal is to advance several areas of conversational AI including natural language understanding (NLU), context modeling, dialog management, commonsense reasoning, natural language generation (NLG), and knowledge acquisition.
How does the Alexa Prize support research?
The Alexa Prize is a research testbed for university students to experiment with and advance conversational AI at scale.

Research teams own the intellectual property (IP) in their systems and are encouraged to publish scientific articles on their work. As described in the Official Rules, participating teams grant Amazon a non-exclusive license to any technology or software they develop in connection with the competition.
What new datasets will I have access to as part of the Alexa Prize?
The TEACh dataset as well as a training dataset proprietary to the live interaction portion of the SimBot Challenge will be available to competitors in each phase.
SimBot
What is the SimBot Challenge?
SimBot, a competition focused on helping advance development of next-generation virtual assistants that will assist humans in completing real-world tasks by continuously learning, and gaining the ability to perform commonsense reasoning.

The SimBot Challenge will have two phases: A public benchmark phase, and a live interactions phase. Participants in both phases will build machine-learning models for natural language understanding, human-robot interaction, and robotic task completion. Artificial intelligence challenges addressed in the competition relate to reasoning on language and scene understanding, learning from demonstration, self-learning, and task completion utilizing natural language.

Unlike previous Alexa Prize competitions, the public benchmark challenge phase will be open to university teams, as well as individuals in academia and industry interested in advancing the science of AI and engaging top researchers from around the globe. The SimBot Challenge public benchmark phase is like existing visual language navigation competitions.
What is the difference between the Public Benchmark Challenge and the Live Interaction Challenge?
The Public Benchmark Challenge is open to any individual or team, academic or industry, who wants to complete and submit a model for evaluation and rating during the evaluation period. It is based on the TEACh dataset offered to the research community in October, 2021. The Live Interaction Period’s participation is limited solely to the university-based teams selected for the SimBot Challenge in November 2021 and June, 2022. These teams will each receive Amazon sponsorship to build a SimBot that will compete in a challenge from July, 2022 to September 2022 where they will receive real time ratings and feedback from Alexa Users.
Why is the SimBot - Live Interaction Challenge only limited to university teams?
The SimBot Challenge - live interaction phase is part of the Alexa Prize which is currently limited to universities and university students in Amazon initiatives to advance AI. However, the Public Benchmarking Challenge is open to both academic and university-based teams.
What will my SimBot do?
SimBot will navigate in a virtual environment to complete challenges guided by Alexa users. SimBot will interact with objects in the environment including but not limited to those common to offices and homes. There will be obstacles and hazards introduced to make game play fun and challenging.
How will I build my SimBot?
SimBots will use images from the game and instructions from Alexa users to navigate in a virtual world. Teams will build AI models which recognize objects and scenes as well as understand natural language commands from users. We plan to provide baseline data and a baseline model as a reference but we expect teams to develop new and novel approaches as well as augment the provided data to improve performance.
Eligibility: Public Benchmark Challenge
Phase 1, SimBot challenge
Who is eligible to participate in the public benchmark challenge?
Any individual or team, academic or industry-based.
How do I sign up to participate in the public benchmark challenge?
A registration form will open on November 15, 2021 at alexaprize.com.
Is funding available to university teams competing in the public benchmark challenge?
No, funding is only available to university teams selected to participate in the SimBot Challenge. In addition to the teams selected in 2021 up to four new, high-performing teams from the public benchmark challenge will be invited to apply for the SimBot challenge, live interaction phase for which funding is available. Learn more here.
Who can apply to participate?
Any individual or team can register and participate in the public benchmark phase with exception of parties from Cuba, Iran, North Korea, Sudan, Syria, and the region of Crimea.

Registration for the public benchmark challenge will open November 15, 2021. The challenge will begin on January 10, 2022.
Do I need to be a certain age?
Participants must be at or above the age of majority in the country, state, province or jurisdiction of residence at the time of registration.
Can I enroll if a family member is an Amazon employee?
Immediate family members and household members of Amazon employees, directors and contractors are not eligible to participate.
Eligibility: SimBot Challenge
Includes sponsored teams for both Public Benchmark and Live Interaction phases
Who can apply to participate?
The Alexa Prize is open to full-time students enrolled in an accredited university, with the exception of universities in Cuba, Iran, North Korea, Sudan, Syria, and the region of Crimea (see Official Rules). Proof of enrollment will be required to participate.
Can I participate if I don’t attend a university?
No. The Alexa Prize is open only to full-time enrolled university students.
Do I need to be enrolled in a university program throughout the duration of the competition?
All participating team members must remain full-time students in good standing at their university while participating in the competition.
Do I need to be a certain age?
Participants must be at or above the age of majority in the country, state, province or jurisdiction of residence at the time of entry.
Can I enroll if a family member is an Amazon employee?
Immediate family members and household members of Amazon employees, directors and contractors are not eligible to participate. See Official Rules for additional restrictions.
If my team fails to apply for the SimBot Challenge now, will there be any future opportunities to compete in the Live Interaction challenge?
Yes, the initial application period run from October 4-31, 2021. In addition to the teams selected in 2021 up to four new, high-performing university teams from the public benchmark challenge will be invited to apply for the SimBot challenge, live interaction phase for which funding is available. Learn more here.
Will university teams selected post-Public Benchmark Challenge be eligible for funding and for what amount?
Teams selected for the SimBot Challenge in June, 2022 will be eligible for funding.
If my team was not selected during the first application period are we eligible to re-apply in may if we qualify?
Yes. University-based teams that participate in the public benchmark phase are eligible to re-apply for the SimBot challenge between May 9 - 23, 2022. Four new, high-performing university teams from the public benchmark challenge will be invited to apply for the SimBot challenge, live interaction phase for which funding is available. Learn more here.
My team is not completely comprised of university students but we perform well in the public benchmark challenge? Is there an opportunity for us to continue in the competition?
Yes, we plan to continue the public benchmark competition through the end of 2022.
My company does collaborative work with several universities, are we eligible to compete in the live interaction challenge alongside them?
No, only full-time students are eligible to participate in the SimBot challenge, which includes the live interaction period.
My university and another frequently collaborate on projects - is there any exception to the students all enrolled in one university rule?
Applications are limited to students all from the same, single, university.
Teams
How many teams will be selected to participate?
All applications will be reviewed and evaluated by a panel of Amazon experts. Up to ten teams will be selected and sponsored by Amazon. All teams selected in November, 2021 will receive a $250,000 grant while those selected in June, 2022 will receive a $200,000 grant intended to support two full-time students, a month of faculty time, free Alexa devices, and free AWS hosting including access to CPU and GPU based machines, SQL and NoSQL databases, and object storage. See the Official Rules for details.
How many team members can our team have?
There are no minimum or maximum team member requirements. All team members must be enrolled in their university throughout the duration of the competition. All teams will receive a $250,000 grant if selected in November 2021 or a $200,000 grant if selected in June, 2022 regardless of how many members are on the team. We recommend a team with 4-6 students with diverse fields of study or areas of expertise.
Can students from different universities be on the same team?
Teams must be comprised of students attending the same university.
Can one university have more than one team?
Yes, universities may have more than one team.
Can I participate on two separate teams?
You can only be a part of one team for the duration of the competition.
Can undergraduate and graduate students work together?
Yes, teams may be comprised of undergraduate and graduate students.
Do I need a faculty advisor?
All teams must nominate a faculty advisor and include the faculty advisor’s consent in the applications.
What is the role of the faculty advisor?
Faculty advisors will advise students on technical directions and be a sounding board for new ideas, similar to a graduate school advisor. They will also act as the official representative from the university for this competition.
Can we add or remove team members during the competition?
During the competition, faculty advisors may request to remove or add members to the team, subject to approval by Amazon.
Can we discuss our SimBot with faculty or students who aren’t on our team?
Only team members may work on their SimBot. However, the faculty advisor and other students and faculty members at your university may provide support and advice to your team and may co-author technical publications and research papers.
Application process
How do we apply?
Check the SimBot page for the latest update on applications.
What do we need to apply?
Once you have selected your team members, team leader, and faculty sponsor, you are ready to begin the application process.
Do all team members have to apply?
Each team must have a team lead, who should apply on behalf of the whole team. Your application must include all of your team members’ information.
Is there an application fee?
There is no application fee.
How will teams be selected to participate?
All applications will be reviewed by a panel of Amazon employees. Teams will be selected based on the following criteria: (1) the potential scientific contribution to the field; (2) the technical merit of the approach; (3) the novelty of the idea; and (4) an assessment of the team’s ability to execute against their plan. Please be sure to provide enough detail in your application to enable our experts to evaluate your proposal.
Competition details
What is the goal of the challenge?
To develop AI models which advance the state of the art and allow users to naturally interact with a robotic assistant in a virtual world to successfully complete a range of challenges.
How will winners be selected?
Winners will be determined based on the final standings at the completion of the finals period.
Can we use other funding to help us participate in this challenge?
Yes, you may use other funding to support your team, subject to the terms described in the Official Rules. External funding will need to be disclosed by January 1, 2023.
Will Alexa customers be able to engage with our SimBot?
Your team will be required to submit its SimBot for certification and publication by the Amazon Alexa team. After certification, you will enter the Internal Amazon Beta Period, where Amazon employees will test your SimBot and provide feedback. After the Internal Amazon Beta Period, we will allow Amazon Alexa customers to try your SimBot and provide feedback to you. Amazon may impose Availability Criteria, or requirements the SimBot must meet before it will be made available to Alexa users. Availability Criteria may include criteria such as a minimum average customer rating, uptime requirements, and an ability to consistently filter offensive content.
Amazon launched the Echo in the UK, Germany, India, Japan, and other countries. Will localized languages be supported?
Your team must build its SimBot using U.S. English. Your SimBot will be available to Alexa customers in the U.S. Customers in other countries may also access it by setting their Amazon PFM (Preferred Marketplace) to U.S.
Will we publish our research from the Alexa Prize?
Yes. Publishing research papers as an outcome of your work on the Alexa Prize is required for all teams participating in the competition, although teams should not publish Amazon confidential information, as described in the Official Rules. The Alexa Prize requires all teams to submit a technical paper for the Alexa Prize proceedings. Your SimBot will not be selected for the finals if your team does not submit a technical paper for Alexa Prize proceedings. Papers will be published at the end of the competition in an online Proceedings of the Alexa Prize, which will be publicly available.

Teams may also publish research papers in third-party publications and conferences, as long as all papers are provided to Amazon for review at least two weeks before the submission deadlines and no research papers are published before the Alexa Prize proceedings are published without Amazon’s prior approval.
Who will own the intellectual property rights in my submission?
You will retain ownership over your SimBot. Amazon will have a non-exclusive license to any technology or software you develop in connection with the competition. See the Official Rules for details.
Prizes
What are the prizes for winning the competition?
A prize of $500,000 will be awarded to the team that creates the best SimBot. The second-place and third-place finalist teams will receive a $100,000 and a $50,000 prize, respectively. See the contest rules for details.
Do we get a stipend and devices to participate in the Alexa Prize?
Up to ten teams will be sponsored to participate in the Alexa Prize in November, 2021. These teams’ universities will receive a $250,000 research grant to fund the team members’ work over the year. Additional teams selected to participate in the SimBot Live Interaction challenge in June, 2022 will receive a $200,000 research grant to fund the team members’ work over the year.

The sponsorship includes one Alexa-enabled device per team member for up to a total of three devices per team and one Alexa-enabled device per faculty advisor, free AWS services to support the development of their SimBot, and support from the Alexa team.
How can the grant be spent?
The grants will be awarded with the intention that they will support two full-time students for the duration of the Competition and one month of the Faculty Advisor’s salary. No more than 35% of the research grants may be allocated to administrative fees. If your team would like to use the funds in another manner, your faculty advisor must receive approval from Amazon before doing so.
What happens if we are selected and receive a stipend but can no longer participate?
Stipends will be awarded in installments payable to the university. If your team withdraws before any of the installments, remaining funds will not be transferred to the university.
How will the prizes be distributed among a team?
The first, second, and third place prizes will be distributed equally among all registered team members. The official list of registered team members must be confirmed by January 30, 2023.
Timeline
What are the key milestones of the competition?
Teams must submit their applications between October 1, 2021 and October 31, 2021. Between November 1 and November 10, 2021, we will announce teams selected to participate. In the summer of 2022 following the public benchmark phase and the second application period teams will be invited to an Alexa Prize Bootcamp at Amazon where they will receive training on the resources made available to all competing teams. The finals will be scheduled between January 30 and March 27, 2023 and will determine the winning teams in the first annual SimBot Challenge.
If selected, when will we receive the stipend, devices, access to the Alexa Prize SimBot toolkit, our AWS account, and be introduced to our point of contact?
We will reach out to all teams no later than November 10, 2021 with instructions on next steps. Up to ten teams will be selected to receive a $250,000 stipend, Alexa-enabled devices, free AWS services to support their development efforts, and support from the Alexa team.
More information
See the full competition rules or submit your questions. Need assistance? Email: alexaprizesupport@amazon.com

Latest news

The latest updates, stories, and more about Alexa Prize.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
We're a new research lab based in San Francisco and Boston focused on developing foundational capabilities for useful AI agents. We're pursuing several key research bets that will enable AI agents to perform real-world actions, learn from human feedback, self-course-correct, and infer human goals. We're particularly excited about combining large language models (LLMs) with reinforcement learning (RL) to solve reasoning and planning, learned world models, and generalizing agents to physical environments. We're a small, talent-dense team with the resources and scale of Amazon. Each team has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. AI agents are the next frontier—the right research bets can reinvent what's possible. Join us and help build this lab from the ground up. Key job responsibilities * Define the product vision and roadmap for our agentic developer platform, translating research into products developers love * Partner deeply with research and engineering to identify which capabilities are ready for productization and shape how they're exposed to customers * Own the developer experience end-to-end from API design and SDK ergonomics to documentation, sample apps, and onboarding flows * Understand our customers deeply by engaging directly with developers and end-users, synthesizing feedback, and using data to drive prioritization * Shape how the world builds AI agents by defining new primitives, patterns, and best practices for agentic applications About the team Our team brings the AGI Lab's agent capabilities to customers. We build accessible, usable products: interfaces, frameworks, and solutions, that turn our platform and model capabilities into AI agents developers can use. We own the Nova Act agent playground, Nova Act IDE extension, Nova Act SDK, Nova Act AWS Console, reference architectures, sample applications, and more.
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. We are seeking a highly skilled and analytical Research Scientist. You will play an integral part in the measurement and optimization of Amazon Music marketing activities. You will have the opportunity to work with a rich marketing dataset together with the marketing managers. This role will focus on developing and implementing causal models and randomized controlled trials to assess marketing effectiveness and inform strategic decision-making. This role is suitable for candidates with strong background in causal inference, statistical analysis, and data-driven problem-solving, with the ability to translate complex data into actionable insights. As a key member of our team, you will work closely with cross-functional partners to optimize marketing strategies and drive business growth. Key job responsibilities Develop Causal Models Design, build, and validate causal models to evaluate the impact of marketing campaigns and initiatives. Leverage advanced statistical methods to identify and quantify causal relationships. Conduct Randomized Controlled Trials Design and implement randomized controlled trials (RCTs) to rigorously test the effectiveness of marketing strategies. Ensure robust experimental design and proper execution to derive credible insights. Statistical Analysis and Inference Perform complex statistical analyses to interpret data from experiments and observational studies. Use statistical software and programming languages to analyze large datasets and extract meaningful patterns. Data-Driven Decision Making Collaborate with marketing teams to provide data-driven recommendations that enhance campaign performance and ROI. Present findings and insights to stakeholders in a clear and actionable manner. Collaborative Problem Solving Work closely with cross-functional teams, including marketing, product, and engineering, to identify key business questions and develop analytical solutions. Foster a culture of data-informed decision-making across the organization. Stay Current with Industry Trends Keep abreast of the latest developments in data science, causal inference, and marketing analytics. Apply new methodologies and technologies to improve the accuracy and efficiency of marketing measurement. Documentation and Reporting Maintain comprehensive documentation of models, experiments, and analytical processes. Prepare reports and presentations that effectively communicate complex analyses to non-technical audiences.