Amazon's Machine Learning University is making its online courses available to the public

Classes previously only available to Amazon employees will now be available to the community.

Machine learning is a field in computational science that analyzes patterns and structures in data to help with learning, reasoning, and decision-making—all without human interaction. Data is the lifeblood of business, and machine learning helps identify signals among the data noise.

More from MLU
Fun visual essays explain key concepts of machine learning.

Machine learning (ML), a subset of artificial intelligence, is at the center of Amazon’s business. It’s used by teams across the company, from the Supply Chain Optimization team to improve its product forecasts, and the Alexa science team to revolutionize daily convenience for customers, to the Amazon Go team for enabling a checkout-free shopping experience, and by the Amazon.com team, in order to enhance customers’ shopping experiences. Moreover, Amazon Sagemaker is an AWS service that provides developers and data scientists the ability to build, train, and deploy machine learning models, attracting customers such as NASA, the National Football League and GE Healthcare.

Machine learning has the potential to transform businesses in all industries, but there’s a major limitation: demand for individuals with ML expertise far outweighs supply. That’s a challenge for Amazon, and for companies big and small across the globe.

Find more free MLU courses

Subscribe to the Machine Learning University YouTube channel to get all of the latest courses. And subscribe to the Amazon Science YouTube channel to learn about the work scientists are doing to bring products and services at Amazon to life.

To help meet that demand, Amazon founded its in-house Machine Learning University (MLU) in 2016. MLU’s curriculum is designed to sharpen the skills of current ML practitioners, while also giving neophytes the tools they need to deploy machine learning for their own projects. Classes are taught by Amazon ML experts.

Three accelerated online courses are now available and will expand to include nine more in-depth courses before year’s end. Beginning in 2021, all MLU classes will be available via on-demand video, along with associated coding materials.

Machine Learning University course on natural language processing
Cem Sazara, an Amazon applied scientist, is the teacher for this Machine Learning University course on natural language processing (NLP). It is one of three initial online courses being offered by MLU. You can find the accompanying course materials on GitHub, and watch the rest of the classes on the Machine Learning University YouTube page.

The first three online courses cover natural language processing (the machine understanding of human language), computer vision (the machine understanding of images and video), and tabular data (machine learning associated to spreadsheet-like tables).

“Machine Learning University got its start from the idea that we were going to have a difficult time finding enough people with ML skills to meet our needs,” says Brent Werness, an AWS research scientist who is, in effect, MLU’s academic director. “Universities can’t develop students with ML skills fast enough for Amazon, much less for all the other companies out there.

Brent Werness and Bree Al-Rashid
Brent Werness, AWS research scientist, and Bree Al-Rashid, who manages the Machine Learning University team, are leading the initiative to bring Amazon's Machine Learning University classes online. This photo was taken prior to the COVID-19 pandemic.
Credit: Dave Quigg

“By going public with the classes, we are contributing to the scientific community on the topic of machine learning, and making machine learning more democratic,” Werness adds. “This field isn’t limited to individuals with advanced science degrees, or technical backgrounds. This initiative to bring our courseware online represents a step toward lowering barriers for software developers, students and other builders who want to get started with practical machine learning.”

MLU courseware is developed via several mechanisms, says Werness. Often, a class will be created to address a specific business problem, such as in computer vision, or natural language processing. In other cases, advances in machine learning suggest changes to the curriculum.

“That way we stay in touch with the business needs, and keep up with advances, such as recent improvements in state-of-the-art AutoML solutions provided by systems like AutoGluon,” says Werness.

MLU’s core curriculum is challenging, and several courses require a multi-week study of the mathematics that are foundational to ML and AI, but the program also now offers accelerated courseware, such as the initial classes being made publicly available, that give students a quick overview of a topic.

Machine Learning University course on computer vision
Rachel Hu, AWS applied scientist, teaches the Machine Learning University course on computer vision. You can find the accompanying course materials on GitHub and watch the rest of the classes on the Machine Learning University YouTube page.

“Instead of a three-class sequence that takes upwards of 18 or 20 weeks to complete, in the accelerated classes we can engage students with machine learning right up front,” says Ben Starsky, MLU program manager. “They can get their hands dirty very quickly in the areas that will provide an opportunity to apply machine-learning concepts to solve business problems. You may not learn everything you need to know in three days, but you’ll know enough to ask, ‘Is this an opportunity for addressing my business problem?’”

MLU classes are taught by Amazon scientists, and some courseware incorporates a textbook, Dive into Deep Learning, written by Amazon scientists Aston Zhang, Mu Li, Zachary Lipton, and Alex Smola. The book offers a detailed yet accessible path toward machine-learning knowledge.

In her work with Amazon students, MLU instructor Rachel Hu says she enjoys the problems they bring into class—an experience she expects to carry over to the public online class.

“When I’m teaching a class for Amazon, I also feel like I’m learning a lot,” says Hu, an AWS applied scientist who previously was a graduate student instructor for an Introduction to Deep Learning class at the University of California, Berkeley. “That’s because students ask great questions. In industry, engineers are solving big problems every day, and those can be really interesting. That also helps us make the courses more relevant to real-world needs.”

Machine Learning University course on tabular data
Paula Grajdeanu, a technical training specialist, teaches this Machine Learning University course on tabular data. You can find the accompanying course materials on GitHub and watch the rest of the classes on the Machine Learning University YouTube page.

Similar to other open-source initiatives, MLU’s courseware will evolve and improve over time based on input from the builder community.

To help make the online classes more engaging, Starsky shipped mobile recording studios to the MLU instructors. “The teachers set up the recording studios in their living rooms or basements,” he says. “That way we get better audio and video than from a webcam on a laptop.”

Demand for machine-learning classes is certain to grow as the technology pervades more and more areas of business. Werness says MLU is currently rebuilding its curriculum, in part to further integrate “Dive into Deep Learning” into class sessions.

“We want to make sure we’re teaching the important things up front and that we’re making good use of students’ time,” he says. “With the transition to working from home, it’s even harder now for class participants to set aside multiple hours of time. We want to be flexible in how people can take these classes.”

Research areas

Related content

US, WA, Seattle
Join us at the cutting edge of Amazon's sustainability initiatives to work on environmental and social advancements to support Amazon's long term worldwide sustainability strategy. At Amazon, we're working to be the most customer-centric company on earth. To get there, we need exceptionally talented, bright, and driven people. The Worldwide Sustainability (WWS) organization capitalizes on Amazon’s scale & speed to build a more resilient and sustainable company. We manage our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation (SSI) is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise. We use this expertise and skills to identify, develop and evaluate the science and innovations necessary for Amazon, customers and partners to meet their long-term sustainability goals and commitments. We are seeking a Principal Applied Scientist who is not just adept in the theoretical aspects of Machine Learning (ML), Artificial Intelligence (AI), and Large Language Models (LLMs) but also possesses a pragmatic, hands-on approach to navigating the complexities of innovation. You will take the lead in conceptualization, building, and launching innovative models and solutions that significantly drive material impacts for our long-term sustainability and climate goals. You'll be guided by problems and customer needs. You'll use strong technical judgment to determine appropriate approaches - custom pre-training models, fine-tuning trusted base models, leveraging retrieval-augmented generation (RAGs), or combining approaches. You'll collaborate with business leaders, scientists, and engineers to incorporate sustainability domain nuances when creating data foundations, developing AI models/applications, and applying techniques like data indexing, validation metrics, model distillation, and customized loss functions. You'll work across teams to embed AI/ML solutions and capabilities into existing sustainability data and systems. You'll define key AI sustainability research directions, adopt/invent new ML techniques, conduct rigorous experiments, publish results, and ensure research translates into practice. You'll develop long-term strategies, persuade teams, propose goals and deliver. If you see yourself as a hands-on technical leader and innovator at the intersection of AI, technology, and sustainability, we'd like to connect. You don't need to be an expert in sustainability and climate domains. Key job responsibilities - Creating web-scale sustainability-specific data foundations that align with our impact areas and sustainability goals; - Models to measure environmental and economic impacts at scale; - Automated solutions simplifying complex, labor-intensive ESG tasks; reasoning mechanisms for multi-view decarbonization plans and multi-objective optimization models; - Models to create, monitor, and quality assure high-integrity forest carbon credits. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York City, NY, USA | San Francisco, CA, USA | Seattle, WA, USA
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate and grow their personal interests and passions. We're always live at Twitch. About the Position We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to an Applied Science Manager. This position will be located in San Francisco. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA
US, CA, San Diego
The Private Brands team is looking for an Applied Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights. We are an interdisciplinary team of Scientists, Engineers, and Economists and primary focus on building optimization and machine learning solutions in supply chain domain with specific focus on Amazon private brand products. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in predictive and machine learning models and working with distributed systems. Academic and/or practical background in Machine Learning are particularly relevant for this position. Familiarity and experience in applying Operations Research techniques to supply chain problems is a plus. We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA | Seattle, WA, USA
US, CA, Sunnyvale
The Amazon Devices team designs and engineers high-profile consumer electronics, including the best-selling Kindle family of products. We have also produced groundbreaking devices like Fire tablets, Fire TV, Amazon Dash, and Amazon Echo. What will you help us create? Work hard. Have fun. Make history. If you are an innovative Applied Scientist, have a track record of delivering to timelines with high quality and are deeply technical, we want to talk to you. You will be closely integrated with the research and development team, both developing and optimizing features. You will work with other world-leading scientists to build and deliver the world's most scalable robotics systems, working together from ideation-to-production using tools such as Computer Vision Deep Learning instance segmentation, pose estimation, activity understanding), CV geometry, active learning and reinforcement learning. A successful candidate will have excellent technical ability, scientific vision, project management skills, great communication skills, and a motivation to achieve results in a collaborative team environment. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
GB, London
Amazon Advertising is looking for a Senior Applied Scientist to join its brand new initiative that powers Amazon’s contextual advertising product. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. We are looking for a dynamic, innovative and accomplished Senior Applied Scientist to work on machine learning and data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you excited by the prospect of analyzing terabytes of data and leveraging state-of-the-art data science and machine learning techniques to solve real world problems? Do you like to own business problems/metrics of high ambiguity where yo get to define the path forward for success of a new initiative? As an applied scientist, you will invent ML and Artificial General Intelligence based solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment. * Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. About the team The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like Contextual data processing and classification, traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety and experimentation. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are open to hiring candidates to work out of one of the following locations: London, GBR
ES, M, Madrid
At Amazon, we are committed to being the Earth’s most customer-centric company. The International Technology group (InTech) owns the enhancement and delivery of Amazon’s cutting-edge engineering to all the varied customers and cultures of the world. We do this through a combination of partnerships with other Amazon technical teams and our own innovative new projects. You will be joining the Tools and Machine learning (Tamale) team. As part of InTech, Tamale strives to solve complex catalog quality problems using challenging machine learning and data analysis solutions. You will be exposed to cutting edge big data and machine learning technologies, along to all Amazon catalog technology stack, and you'll be part of a key effort to improve our customers experience by tackling and preventing defects in items in Amazon's catalog. We are looking for a passionate, talented, and inventive Scientist with a strong machine learning background to help build industry-leading machine learning solutions. We strongly value your hard work and obsession to solve complex problems on behalf of Amazon customers. Key job responsibilities We look for applied scientists who possess a wide variety of skills. As the successful applicant for this role, you will with work closely with your business partners to identify opportunities for innovation. You will apply machine learning solutions to automate manual processes, to scale existing systems and to improve catalog data quality, to name just a few. You will work with business leaders, scientists, and product managers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. You will be part of team of 5 scientists and 13 engineers working on solving data quality issues at scale. You will be able to influence the scientific roadmap of the team, setting the standards for scientific excellence. You will be working with state-of-the-art models, including image to text, LLMs and GenAI. Your work will improve the experience of millions of daily customers using Amazon in Europe and in other regions. You will have the chance to have great customer impact and continue growing in one of the most innovative companies in the world. You will learn a huge amount - and have a lot of fun - in the process! This position will be based in Madrid, Spain We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, WA, Redmond
Project Kuiper is an initiative to increase global broadband access through a constellation of 3,236 satellites in low Earth orbit (LEO). Its mission is to bring fast, affordable broadband to unserved and underserved communities around the world. Project Kuiper will help close the digital divide by delivering fast, affordable broadband to a wide range of customers, including consumers, businesses, government agencies, and other organizations operating in places without reliable connectivity. As an Applied Scientist on the team you will responsible for building out and maintaining the algorithms and software services behind one of the world’s largest satellite constellations. You will be responsible for developing algorithms and applications that provide mission critical information derived from past and predicted satellite orbits to other systems and organizations rapidly, reliably, and at scale. You will be focused on contributing to the design and analysis of software systems responsible across a broad range of areas required for automated management of the Kuiper constellation. You will apply knowledge of mathematical modeling, optimization algorithms, astrodynamics, state estimation, space systems, and software engineering across a wide variety of problems to enable space operations at an unprecedented scale. You will develop features for systems to interface with internal and external teams, predict and plan communication opportunities, manage satellite orbits determination and prediction systems, develop analysis and infrastructure to monitor and support systems performance. Your work will interface with various subsystems within Project Kuiper and Amazon, as well as with external organizations, to enable engineers to safely and efficiently manage the satellite constellation. The ideal candidate will be detail oriented, strong organizational skills, able to work independently, juggle multiple tasks at once, and maintain professionalism under pressure. You should have proven knowledge of mathematical modeling and optimization along with strong software engineering skills. You should be able to independently understand customer requirements, and use data-driven approaches to identify possible solutions, select the best approach, and deliver high-quality applications. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. About the team The Constellation Management & Space Safety team maintains and builds the software services responsible for maintaining situational awareness of Kuiper satellites through their entire lifecycle in space. We coordinate with internal and external organizations to maintain the nominal operational state of the constellation. We build automated systems that use satellite telemetry and other relevant data to predict future orbits, plan maneuvers to avoid high risk close approaches with other objects in space, keep satellites in the desired locations, and exchange data with external organizations. We provide visibility information that is used to predict and establish communication channels for Kuiper satellites. We are open to hiring candidates to work out of one of the following locations: Redmond, WA, USA
US, WA, Seattle
Join us in the evolution of Amazon’s Seller business! The Selling Partner Recruitment and Success organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential by using our scaled, automated, and self-service tools. We aim to accelerate the growth of Sellers by providing tools and insights that enable them to make better and faster decisions at each step of selection management. To accomplish this, we offer intelligent insights that are both detailed and actionable, allowing Sellers to introduce new products and engage with customers effectively. We leverage extensive structured and unstructured data to generate science-based insights about their business. Furthermore, we provide personalized recommendations tailored to individual Sellers' business objectives in a user-friendly format. These insights and recommendations are integrated into our products, including Amazon Brand Analytics (ABA), Product Opportunity Explorer (OX), and Manage Your Growth (MYG). We are looking for a talented and passionate Sr. Research Scientist to lead our research endeavors and develop world-class statistical and machine learning models. The successful candidate will work closely with Product Managers (PM), User Experience (UX) designers, engineering teams, and Seller Growth Consulting teams to provide actionable insights that drive improvements in Seller businesses. Key job responsibilities You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. About the team The Seller Growth science team aims to provide data and science solutions to drive Seller growth and create better Seller experiences. We structure our science domain with three key themes and two horizontal components. We discover the opportunity space by identifying opportunities with unrealized potential, then generate actionable analytics to identify high value actions (HVAs) that unlock the opportunity space, and finally, empower Sellers with personalized Growth Plans and differentiated treatment that help them realize their potential. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, San Diego
Join our Private Brand Intelligence (PBI) organization in building Data Science driven solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. PBI applies Generative AI, Machine Learning, Statistics, and Economics to derive actionable insights about the complex economy of Amazon’s retail business. We also develop ML/Econ models and algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using cutting-edge technology, to solve some of the toughest business problems at Amazon. You will work with business leaders and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed solutions. You will invent and implement scalable ML and econometric models while building tools to help our customers gain and apply insights. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale science problems, enable measurable actions on the Consumer economy, and work closely with scientists and economists. If you are interested in Machine Learning, Generative AI, and large-scale intelligent solutions then this is the role you have been looking for. We are a Day 1 team, with a charter to be disruptive through the use of Data Science and Machine Learning. You will start on green field projects working with engineers to bring our models to life as well as data products that other teams can benefit from. We are an inclusive team, and are looking for Data Scientists that aren't averse to learning and building and or optimizing ML models alongside our engineers, product managers and business partners. As a Data Scientist on the team, you will drive improvements to our business, collaborating with scientists, economists, engineers and highly-engaged stakeholders to deliver actionable insights continuously. We’re truly an agile shop: we work closely with users, deliver features with high frequency, can pivot on a dime when needed, and are passionate about solving customer pain points. We are looking for data science leaders who share our vision for continuously improving the customer experience, who are motivated by challenging business problems and who love thinking big. Key job responsibilities * You will take the lead on large projects that span multiple teams. The problems you solve will be ambiguous, requiring both technical and domain expertise. You will deliver significant benefits to business with minimal assistance. * You need to understand challenges in your teams’ business area, the applicability of relevant data science disciplines, and interactions among systems. You will influence your team’s technical and business strategy by making insightful contributions to team priorities and approach. * You will make solutions simpler. You will optimize connected systems using their dynamics. You will improve the consistency and integration between your team’s solutions and the work being done by related teams. * You will improve the work done by others, either via a collaborative effort or by increasing their scientific knowledge, using specialized tools or advanced techniques. You will lead and actively participate in scientific reviews for your team and others. * You are able to communicate your ideas effectively to achieve the right outcome for your team and customer including when to make appropriate trade-offs. You harmonize discordant views and lead the resolution of contentious issues. * You actively participate in the hiring process and improve the skills and knowledge of others via mentoring. We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA | Seattle, WA, USA
US, WA, Seattle
Are you interested in working with top talents in Optimization, Operations Research and Supply Chain to help Amazon to efficiently match our Devices with worldwide customers? We have challenging problems and need your innovative solutions to make tremendous financial impacts! The Amazon Demand Science Optimization organization is looking for an Applied Scientist with background in Operations Research, Optimization, Supply Chain and/or Simulation to support science efforts to integrate across inventory management functionalities. Our team is responsible for science models (both deterministic and stochastic) that power world-wide inventory allocation for Amazon Devices business that includes Echo, Kindle, Fire Tablets, Amazon TVs, Amazon Fire TV sticks, Ring, and other smart home devices. We formulate and solve challenging large-scale financially-based optimization problems which ingest demand forecasts and produce optimal procurement, production, distribution, and inventory management plans. In addition, we also work closely with the demand forecasting, material procurement, production planning, finance, and logistics teams to co-optimize the inventory management and supply chain for Amazon Devices given operational constraints. Key job responsibilities The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and an ability to work in a fast-paced and ever-changing environment and a desire to help shape the overall business. Responsibilities include: - Design and develop advanced mathematical, simulation, and optimization models and apply them to define strategic and tactical needs and drive appropriate business and technical solutions in the areas of inventory management and distribution, network flow, supply chain optimization, and demand planning - Apply mathematical optimization techniques (linear, quadratic, SOCP, robust, stochastic, dynamic, mixed-integer programming, network flows, nonlinear, nonconvex programming) and algorithms to design optimal or near optimal solution methodologies to be used by in-house decision support tools and software - Research, prototype and experiment with these models by using modeling languages such as Python; participate in the production level deployment - Create, enhance, and maintain technical documentation, and present to other Scientists, Product, and Engineering teams - Lead project plans from a scientific perspective by managing product features, technical risks, milestones and launch plans - Influence the organization's long-term roadmap and resourcing, onboard new technologies onto Science team's toolbox, mentor other Scientists About the team https://www.linkedin.com/feed/update/urn:li:activity:7089317294417346561/ We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA