How Amazon Robotics researchers are solving a “beautiful problem”

Teaching robots to stow items presents a challenge so large it was previously considered impossible — until now.

The rate of innovation in machine learning is simply off the chart — what is possible today was barely on the drawing board even a handful of years ago. At Amazon, this has manifested in a robotic system that can not only identify potential space in a cluttered storage bin, but also sensitively manipulate that bin’s contents to create that space before successfully placing additional items inside — a result that, until recently, was impossible.

Related content
Why multimodal identification is a crucial step in automating item identification at Amazon scale.

This journey starts when a product arrives at an Amazon fulfillment center (FC). The first order of business is to make it available to customers by adding it to the FC's available inventory.

The stowing process

In practice, this means picking it up and stowing it in a storage pod. A pod is akin to a big bookcase, made of sturdy yellow fabric, that comprises up to 40 cubbies, known as bins. Each bin has strips of elastic across its front to keep the items inside from falling out. These pods are carried by a wheeled robot, or drive unit, to the workstation of the Amazon associate doing the stowing. When the pod is mostly full, it is wheeled back into the warehouse, where the items it contains await a customer order.

Stowing is a major component of Amazon’s operations. It is also a task that seemed an intractable problem from a robotic automation perspective, due to the subtlety of thought and dexterity required to do the job.

Picture the task. You have an item for stowing in your hand. You gauge its size and weight. You look at the array of bins before you, implicitly perceiving which are empty, which are already full, which bins have big chunks of space in them, and which have the potential to make space if you, say, pushed all the items currently in the bin to one side. You select a bin, move the elastic out of the way, make room for the item, and pop it in. Job done. Now repeat.

“Breaking all existing industrial robot thinking”

This stow task requires two high-level capabilities not generally found in robots. One, an excellent understanding of the three-dimensional world. Two, the ability to manipulate a wide range of packaged but sometimes fragile objects — from lightbulbs to toys — firmly, but sensitively: pushing items gently aside, flipping them up, slotting one item at an angle between other items and so on.

A simulation of robotic stowing

For a robotic system to stand a chance at this task, it would need intelligent visual perception, a free-moving robot arm, an end-of-arm manipulator unknown to engineering, and a keen sense of how much force it is exerting. In short: good luck with that.

“Stow fundamentally breaks all existing industrial robotic thinking,” says Siddhartha Srinivasa, director of Amazon Robotics AI. “Industrial manipulators are typically bulky arms that execute fixed trajectories very precisely. It’s very positional.”

When Srinivasa joined Amazon in 2018, multiple robotics programs had already attempted to stow to fabric pods using stiff positional manipulators.

“They failed miserably at it because it's a nightmare. It just doesn't work unless you have the right computational tool: you must not think physically, but computationally.”

Srinivasa knew the science for robotic stow didn’t exist yet, but he knew the right people to hire to develop it. He approached Parker Owan as he completed his PhD at the University of Washington.

A “beautiful problem”

Parker Owan, Robotics AI senior applied scientist, poses next to a robotic arm and in front of a yellow soft sided storage pod
Parker Owan, Robotics AI senior applied scientist

“At the time I was working on robotic contact, imitation learning, and force control,” says Owan, now a Robotics AI senior applied scientist. “Sidd said ‘Hey, there’s this beautiful problem at Amazon that you might be interested in taking a look at’, and he left it at that.”

The seed was planted. Owan joined Amazon, and then in 2019 dedicated himself to the stow challenge.

“I came at it from the perspective of decision-making algorithms: the perception needs; how to match items to the appropriate bin; how to leverage information of what's in the bin to make better decisions; motion planning for a robot arm moving through free space; and then actually making contact with products and creating space in bins.”

Aaron Parness, Robotics AI senior manager of applied science, poses near a robotic arm
Aaron Parness, Robotics AI senior manager of applied science

About six months into his exploratory work, Owan was joined by a small team of applied scientists, and hardware expert Aaron Parness, now a Robotics AI senior manager of applied science. Parness admits he was skeptical.

“My initial reaction was ‘Oh, how brave and naïve that this guy, fresh out of his PhD, thinks robots can deal with this level of clutter and physical contact!’”

But Parness was quickly hooked. “Once you see how the problem can be broken down and structured, it suddenly becomes clear that there's something super useful and interesting here.”

“Uncharted territory”

From a hardware perspective, the team needed to find a robot arm with force feedback. They tried several, before the team landed on an effective model. The arm provides feedback hundreds of times per second on how much force it is applying and any resistance it is meeting. Using this information to control the robot is called compliant manipulation.

“We knew from the beginning that we needed compliant manipulation, and we hadn't seen anybody in industry do this at scale before,” says Owan. “It was uncharted territory.”

Parness got to work on the all-important hardware. The problem of moving the elastics aside to stow an item was resolved using a relatively simple hooking system.

How the band separator works

The end-of-arm tool (EOAT) proved to be a next-level challenge. One reason that stowing is difficult for robots is the sheer diversity of items Amazon sells, and their associated packaging. You might have an unpumped soccer ball next to a book, next to a sports drink, next to a T-shirt, next to a jewelry box. A robot would need to handle this level of variety. The EOAT evolved quickly over two years, with multiple failures and iterations.

Paddles grip an array of items

“In the end, we found that gently squeezing an item between two paddles was the more stable way to hold items than using suction cups or mechanical pinchers,” says Parness.

However, the paddle set up presented a challenge when trying to insert held items into bins — the paddles kept getting in the way. Parness and his growing team hit upon an alternative: holding the item next to a bin, before simultaneously opening the paddles and using a plunger to push the item in. This drop-and-push technique was prone to errors because not all items reacted to it in the same way.

The EOAT’s next iteration saw the team put miniature conveyor belts on each paddle, enabling the EOAT to feed items smoothly into the bins without having to enter the bin itself.

The miniature conveyor belt works to bring an item to its designated bin

“With that change, our stowing success rate jumped from about 80% to 99%. That was a eureka moment for us — we knew we had our winner,” says Parness.

Making space with motion primitives

The ability to place items in bins is crucial, but so is making space in cluttered bins. To better understand what would be required of the robot system, the team closely studied how they performed the task themselves. Owan even donned a head camera to record his efforts.

The team was surprised to find that the vast majority of space-making hand movements within a fabric bin could be boiled down to four types or “motion primitives”. These include a sideways sweep of the bin’s current contents, flipping upright things that are lying flat, stacking, and slotting something at an angle into the gap between other items.

The process of making space

The engineers realized that the EOAT’s paddles could not get involved with this bin-manipulation task, because they would get in the way. The solution, in the end, was surprisingly simple: a thin metal sheet that could extend from the EOAT, dubbed “the spatula”. The extended spatula can firmly, but sensitively, push items to one side, flip them up, and generally be used to make room in a bin, before the paddles eject an item into the space created.

But how does the system know how full the pod’s bins are, and how does it decide where, and how, it will make space for the next item to be stowed? This is where visual perception and machine learning come into play.

Deciding where to attempt to stow an item requires a good understanding of how much space, in total, is available in each fabric bin. In an ideal world, this is where 3D sensor technologies such as LiDAR would be used. However, because the elastic cords across the front of every bin partially blocks the view inside, this option isn’t feasible.

A robot arm executes motion primitives

Instead, the system’s visual perception is based on cameras pointed at the pod that feed their image data to a machine learning system. Based on what it can see of each bin’s contents, the system “erases” the elastics and models what is lying unseen in the bin, and then estimates the total available space in each of the pod’s bins.

Often there is space available in a cluttered bin, but it is not contiguous: there are pockets of space here and there. The ML system — based in part on existing models developed by the Amazon Fulfillment Technologies team — then predicts how much contiguous space it can create in each bin, given the motion primitives at its disposal.

How the perception system "sees" available space

“These primitives, each of which can be varied as needed, can be chained in infinitely many ways,” Srinivasa explains. “It can, say, flip it over here, then push it across and drop the item in. Humans are great at identifying these primitives in the first place, and machine learning is great at organizing and orchestrating them.”

When the system has a firm idea of the options, it considers the items in its buffer — an area near the robot arm’s gantry in which products of various shapes and sizes wait to be stowed — and decides which items are best placed in which bins for maximum efficiency.

“For every potential stow, the system will predict its likelihood of success,” says Parness. “When the best prediction of success falls to about 96%, which happens when a pod is nearly full, we send that pod off and wheel in a new one.”

“Robots and people work together”

At the end of summer 2021, with its potential feasibility and value becoming clearer, the senior leadership team at Amazon gave the project their full backing.

“They said ‘As fast as you can go; whatever you need’. So this year has been a wild, wild ride. It feels like we’re a start-up within Amazon,” says Parness, who noted the approach has significant advantages for FC employees as well.

Related content
Amazon fulfillment centers use thousands of mobile robots. To keep products moving, Amazon Robotics researchers have crafted unique solutions.

“Robots and people work together in a hybrid system. Robots handle repetitive tasks and easily reach to the high and low shelves. Humans handle more complex items that require intuition and dexterity. The net effect will be more efficient operations that are also safer for our workers.”

Prototypes of the robotic stow workstation are installed at a lab in Seattle, Washington, and another system has been installed at an FC in Sumner, Washington, where it deals with live inventory. Already, the prototypes are stowing items well and showcasing the viability of the system.

“And there are always four or five scientists and engineers hovering around the robot, documenting issues and looking for improvements,” says Parness.

Stow will be the first brownfield automation project, at scale, at Amazon. We're enacting a future in which robots and humans can actually work side by side without us having to dramatically change the human working environment.
Siddhartha Srinivasa

This year, in a stowing test designed to include a variety of challenging product attributes — bagged items, irregular items with an offset center of gravity, and so on — the system successfully stowed 94 of 95 items. Of course, some items can never be stowed by this system, including particularly bulky or heavy products, or cylindrical items that don’t behave themselves on conveyor belts. The team’s ultimate target is to be able to stow 85% of products stocked by a standard Amazon FC.

“Interacting with chaotic arrangements of items, unknown items with different shapes and sizes, and learning to manipulate them in intelligent ways, all at Amazon scale — this is ground-breaking,” says Owan. “I feel like I’m at ground zero for a big thing, and that’s what makes me excited to come to work every day.”

“Stow will be the first brownfield automation project, at scale, at Amazon,” says Srinivasa. “Surgically inserting automation into existing buildings is very challenging, but we're enacting a future in which robots and humans can actually work side by side without us having to dramatically change the human working environment.

Related content
Company is testing a new class of robots that use artificial intelligence and computer vision to move freely throughout facilities.

"One of the advantages of the type of brownfield automation we do at Robotics AI is that it’s minimally disruptive to the process flow or the building space, which means that our robots can truly work alongside humans," Srinivasa adds. "This is also a future benefit of compliant arms as they can, via software and AI, be made safer than industrial arms.”

Robots and humans working side by side is key to the long-term expansion of this technology beyond retail, says Parness.

“Think of robots loading delicate groceries or, longer term, loading dishwashers or helping people with tasks around the house. Robots with a sense of force in their control loop is a new paradigm in compliant-robotics applications.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, WA, Seattle
Amazon is seeking an experienced, self-directed data scientist to support the research and analytical needs of Amazon Web Services' Sales teams. This is a unique opportunity to invent new ways of leveraging our large, complex data streams to automate sales efforts and to accelerate our customers' journey to the cloud. This is a high-visibility role with significant impact potential. You, as the right candidate, are adept at executing every stage of the machine learning development life cycle in a business setting; from initial requirements gathering to through final model deployment, including adoption measurement and improvement. You will be working with large volumes of structured and unstructured data spread across multiple databases and can design and implement data pipelines to clean and merge these data for research and modeling. Beyond mathematical understanding, you have a deep intuition for machine learning algorithms that allows you to translate business problems into the right machine learning, data science, and/or statistical solutions. You’re able to pick up and grasp new research and identify applications or extensions within the team. You’re talented at communicating your results clearly to business owners in concise, non-technical language. Key job responsibilities • Work with a team of analytics & insights leads, data scientists and engineers to define business problems. • Research, develop, and deliver machine learning & statistical solutions in close partnership with end users, other science and engineering teams, and business stakeholders. • Use AWS services like SageMaker to deploy scalable ML models in the cloud. • Examples of projects include modeling usage of AWS services to optimize sales planning, recommending sales plays based on historical patterns, and building a sales-facing alert system using anomaly detection.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.